a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Do : \(8^{100}< 9^{100}\)
=> \(2^{300}< 3^{200}\)
b) Do \(\dfrac{13}{38}>\dfrac{13}{39}\)
Mà : \(\dfrac{13}{39}=\dfrac{1}{3}\)
=> \(\dfrac{13}{38}>\dfrac{1}{3}\)
c)Do : \(\sqrt{235}>\sqrt{225}\)
Mà : \(\sqrt{225}=15\)
=> \(\sqrt{235}>15\)
a) Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Ta thấy 8<9 suy ra \(8^{100}< 9^{100}\)
Vậy \(2^{300}< 3^{200}\)
b) Ta có:
38<39 suy ra \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}\)
suy ra \(\dfrac{13}{38}>\dfrac{1}{3}\)
\(\sqrt{235}>\sqrt{225}=15\)
suy ra \(\sqrt{235}>15\)
a, 2300 =(23)100 =8100
3200 =(32)100=9100
vậy 8100<9100 hay 2300<3200
Bài 1: So sánh
a) 2\(^{300}\)= (2\(^3\))\(^{100}\)=8\(^{100}\)
3\(^{200}\)=(3\(^2\))\(^{100}\)= 9\(^{100}\)
Vì 8<9; 100>0 nên => 8\(^{100}\)<9\(^{100}\)
b) Do \(\frac{13}{38}\)>\(\frac{13}{39}\)
Mà \(\frac{13}{39}\)=\(\frac{1}{3}\)
=> \(\frac{13}{38}\)>\(\frac{1}{3}\)
c) Do \(\sqrt{235}\)>\(\sqrt{225}\)
Mà \(\sqrt{225}\)= 15
=> \(\sqrt{235}\)>15
Chúc bạn học tốt