\(36-y^2=8\left(x-2010\right)^2\)
Tìm x, biết:
\(36-y^2=8\left(x-2010\right)^2\)
Tìm x,y thuộc N biết
\(36-y^2=8\left(x-2010\right)^2\)
Tham khảo:
Chúc bạn học tốt!
Bạn có thể tham khảo nhé ! Câu hỏi của Kudo shinichi - Toán lớp 7 | Học trực tuyến - Hoc24
Ta cs :(bn viết lại đề vào chỗ này)
=>25-8.(x-2010)2=y2 (1)
Mà \(y^2\ge0\Rightarrow\left(x-2010\right)^2\le\frac{25}{8}\)
Lại cs:(x-2010)2 là số chính phương và (x-2010)2\(\le\) 3,125
=>(x-2020)2\(\in\left\{0;1\right\}\)
\(\left[{}\begin{matrix}\left(x-2010^2\right)=0\\\left(x-2010\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2010\\x=2011\end{matrix}\right.\)
TH1 :vs (x-2010)2=0 thì thay vào(1) ta đc
25-8.0=y^2=>25=y^2 Mà y \(\in N\)=>y \(\in\left\{5\right\}\)
TH2:vs( x-2010)^2=1
=>25-8=y^2=>7=y^2=>ko cs giá trị vì y thuộc N
Vây x=2010,y=5
Tìm\(x,y\in N,\)biết:
\(36-y^2=8\left(x-2010\right)^2\)
\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\)
\(\Rightarrow36\ge y^2\)\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)
Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{36}{8}=\frac{9}{2}\)(loại)
Xét \(y^2=1\Rightarrow8\left(x-2010\right)^2=36-1=35\Rightarrow\left(x-2010\right)^2=\frac{35}{8}\)(loại)
Bạn xét tiếp nha :))
Ta có: (x - 2010)2 \(\ge\)0 \(\forall\) x <=> 8(x - 2010)2 \(\ge\)0 \(\forall\)x
<=>36 - y2 \(\ge\)0
<=> 36 \(\ge\)y2
<=> y2 \(\le\)36
<=> |y| \(\le\)6
Do y \(\in\)N => 0 \(\le\)y < 6
+) Với y = 0 => 36 - 02 = 8(x - 2010)2
=> 36 = 8(x - 2010)2
=> (x - 2010)2 = 36 : 8 (ko thõa mãn)
+) Với y = 1 => 36 - 12 = 8(x - 2010)2
=> 35 = 8(x - 2010)2
=> (x - 2010)2 = 35 : 8 (ko thõa mãn)
+) Với y = 2 => 36 - 22 = 8(x - 2010)2
=> 32 = 8(x - 2010)2
=> (x - 2010)2 = 32 : 8
=> (x - 2010)2 = 4 = 22
=> \(\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=2012\\x=2008\end{cases}}\)
+) Với y = 3 => 36 - 32 = 8(x - 2010)2
=> (x - 2010)2 = 27 : 8 (ko thõa mãn)
+) Với y = 4 => 36 - 42 = 8(x - 2010)2
=> (x - 2010)2 = 20 : 8 (ko thõa mãn)
+) Với y = 5 => 36 - 52 = 8(x - 2010)2
=> (x - 2010)2 = 11 : 8 (ko thõa mãn)
Vậy ...
Tìm x, y \(\in N\) biết: \(36-y^2=8\left(x-2010\right)^2\)
ta có: 8(x-2010)2+y2=36
Do y2\(\ge\)0\(\Rightarrow\)(x-2010)2\(\le\)\(\dfrac{36}{8}\)
Do đó (x-2010)2 \(\in\) {0;1;4}.
Với (x-2010)2=0.Suy ra x=2010
và y2=36 nên y=6.
Với (x-2010)2=1.suy ra x=2011 và
y2=36-8=28 (loại)
Với (x-2010)2=4.Suy ta x=2012 và
y2=36-32=4.Suy ra y=2
Vậy ta có các cặp (x;y) thuộc N sau
(2010;6) ; (2012;2)
Tìm x , y thuộc N biết
36 - \(y^2\) = 8 \(\left(x-2010\right)^2\)
1. Tính giá trị biểu thức:\(A=xy^3+5xy^3+\left(-7xy^3\right)\)tại x = 2 ; y = -1
2. Tìm \(x,y\inℕ\)biết: \(36-y^2=8\left(x-2010\right)^2\)
Cho 3 số dương x,y,z thỏa mãn điều kiện xy+yz+xz=2010.CMR: giá trị của biểu thứ sau k phụ tuộc vào biến x;y;z
P=\(x\sqrt{\frac{\left(2010+y^2\right)\left(2010+z^2\right)}{2010+x^2}}\)+ \(y\sqrt{\frac{\left(2010+z^2\right)\left(2010+x^2\right)}{2010+y^2}}\)+\(z\sqrt{\frac{\left(2010+x^2\right)\left(2010+y^2\right)}{2010+z^2}}\)
gt pt nó thành nhân tử thay vào P tính
mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé
Giải phương trình:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{^{x^2}}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}\)
Cho \(\left(x+\sqrt{x^2+2010}\right)\left(y+\sqrt{y^2+2010}\right)=2010\)
Tính S=x+y
theo đề bài \(\left(x+\sqrt{x^2+2010}\right)\left(y+\sqrt{y^2+2010}\right)=2010\)
mà \(\left(\sqrt{x^2+2010}+x\right)\left(\sqrt{x^2+2010}-x\right)=2010\)
nên \(\sqrt{x^2+2010}-x=\sqrt{y^2+2010}+y\)
hay \(x+y=\sqrt{x^2+2010}-\sqrt{y^2+2010}\) (1)
Tương tự \(\left(\sqrt{y^2+2010}+y\right)\left(\sqrt{y^2+2010}-y\right)=2010\)
nên \(\sqrt{x^2+2010}+x=\sqrt{y^2+2010}-y\)
hay \(x+y=\sqrt{y^2+2010}-\sqrt{x^2+2010}\) (2)
Từ (1) và (2) suy ra S = x + y = 0.