Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Hà Lan
Xem chi tiết

     C =           \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)

  2\(\times\)C =   1 +  \(\dfrac{1}{2}\)  + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\) 

\(\times\) C - C =   1 -  \(\dfrac{1}{128}\)

       C       = \(\dfrac{127}{128}\)

 

Tùng
Xem chi tiết
Tùng
17 tháng 12 2023 lúc 20:46

giải tri tiết nha

khang pro
17 tháng 12 2023 lúc 20:48

1/5+45/9+1/2+1/3+1/2+1/9+1/15+1/99= ai trả lời đc đưa số tài khoản mik cho 100k

candy trang
Xem chi tiết
(:!Tổng Phước Ru!:)
25 tháng 5 2022 lúc 17:26

 

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{128}-\dfrac{1}{256}\right)\)

\(A=1-\dfrac{1}{256}\)

\(A=\dfrac{255}{256}\)

 

 

Trần Minh Tuấn
Xem chi tiết
Kudo Shinichi AKIRA^_^
16 tháng 2 2022 lúc 21:26

\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)

=>\(B=\dfrac{32+16+6+2+1}{64}\)

=>\(B=\dfrac{63}{64}\)

Sơn Mai Thanh Hoàng
16 tháng 2 2022 lúc 21:23

\(\dfrac{63}{64}\)

Nguyễn Việt Lâm
16 tháng 2 2022 lúc 21:36

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^6}\)

\(2B=1+\dfrac{1}{2}+...+\dfrac{1}{2^5}\)

\(\Rightarrow2B-B=1-\dfrac{1}{2^6}\)

\(\Rightarrow B=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Trần Phương Thảo
Xem chi tiết
Huy Thắng Nguyễn
21 tháng 7 2017 lúc 16:32

Ta có: \(VT=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(4VT=\dfrac{1}{2^2:2^2}+\dfrac{1}{4^2:2^2}+\dfrac{1}{6^2:2^2}+...+\dfrac{1}{100^2:2^2}\)

\(4VT=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

Lại có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(\Rightarrow4VT-1< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)(*)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\) (**)

Từ (*) và (**) \(\Rightarrow4VT< 2-\dfrac{1}{50}\)

\(\Rightarrow VT< \dfrac{1}{2}-\dfrac{1}{200}< VP\Rightarrow\) đpcm

b) Ta có: \(2VT=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)

\(2VT+VT=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

\(3VT=1-\dfrac{1}{64}< 1\)

\(\Rightarrow VT< \dfrac{1}{3}\) (đpcm)

Cô Nàng Song Tử
Xem chi tiết
Giang
10 tháng 8 2017 lúc 22:46

Giải:

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)

\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}\)

Lấy vế trừ vế, ta được:

\(A-\dfrac{1}{2}A=\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)

\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)

\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}-\dfrac{1}{2^7}}{\dfrac{1}{2}}\)

\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}\left(1-\dfrac{1}{2^6}\right)}{\dfrac{1}{2}}\)

\(\Leftrightarrow A=1-\dfrac{1}{2^6}\)

Vậy \(A=1-\dfrac{1}{2^6}\).

Chúc bạn học tốt!!!

 Mashiro Shiina
10 tháng 8 2017 lúc 23:28

Đặt:

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)

\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)

\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)

\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)

\(A=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Nguyễn Tuệ Khanh
Xem chi tiết
BOT-IQ200/VN ✓
15 tháng 10 2021 lúc 21:20
Đáp án𝑠=15376
Dung Hòa
Xem chi tiết
ILoveMath
4 tháng 1 2022 lúc 21:46

\(\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{128}\\ =\dfrac{63}{128}\)

\(7m^28dm^2=7,08m^2\)

Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 21:46

c: =7,08

Nguyễn Hoàng Minh
4 tháng 1 2022 lúc 21:47

Đặt \(A=\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{128}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^7}\\ \Rightarrow2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^6}\\ \Rightarrow2A-A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^6}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^7}\\ \Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2^7}=\dfrac{2^6-1}{2^7}=\dfrac{63}{128}\)

\(7m^28dm^2=7\dfrac{8}{100}m^2=7,08m^2\)

George H. Dalton
Xem chi tiết
 Mashiro Shiina
29 tháng 4 2018 lúc 7:54

\(N=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)

\(N=\dfrac{1}{2^1}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\)

\(2N=1-\dfrac{1}{2^1}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\)

\(2N+N=1-\dfrac{1}{2^6}\)

\(N=\dfrac{1}{3}-\dfrac{1}{2^6.3}< \dfrac{1}{3}\left(đpcm\right)\)