Tập xác định của hàm số: \(y=\dfrac{x+m}{2x^2+4x+m-3}\) là R khi nào
Hàm số y = log2( 4x- 2x+ m) có tập xác định D= R khi nào?
\(\Leftrightarrow4^x-2^x+m>0;\forall x\)
Đặt \(2^x=t>0\Rightarrow t^2-t+m>0;\forall t>0\)
\(\Rightarrow m>-t^2+t\Rightarrow m>\max\limits_{t>0}\left(-t^2+t\right)=\dfrac{1}{4}\)
Vậy \(m>\dfrac{1}{4}\)
\(y'=\left(2x-2\right)f'\left(x^2-2x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\f'\left(x^2-2x\right)=0\end{matrix}\right.\)
Xét \(f'\left(x^2-2x\right)=0\Rightarrow\left\{{}\begin{matrix}x^2-2x=-2\\x^2-2x=1\\x^2-2x=3\end{matrix}\right.\)
\(\Rightarrow x=\left\{-1;1-\sqrt{2};1+\sqrt{2};3\right\}\)
Bảng xét dấu:
Hàm có 2 cực tiểu (sao khác cả 2 đáp án khoanh thế kia)
Hàm số y = log 2 ( 4 x - 2 x + m ) có tập xác định là D = R khi
A. m ≤ 1 4
B. m ≥ 1 4
C. m > 1 4
D. m < 1 4
Hàm số y = l o g 2 ( 4 x - 2 x + m ) có tập xác định là D+R khi
Hàm số y = log 2 ( 4 x - 2 x + m ) có tập xác định là D = R khi
A. m ≤ 1 4
B. m < 1 4
C. m > 1 4
D. m ≥ 1 4
Cho hàm số y=\(\left\{{}\begin{matrix}\dfrac{2x-3}{x-1}khix\ge2\\x^3-3xkhĩ< 2\end{matrix}\right.\) Khẳng định nào sau đây là khẳng định sai?
A.Tập hợp xác định của hàm số là R
B. Tập xác định của hàm số là R\\(\left\{1\right\}\)
C. Giá trị của hàm số tại x=2 bằng 1
D. Giá trị của hàm số tại x=1 bằng -2
`C.x=2=>y=(2.2-3)/(2-1)=1=>Đ`
`D.x=1=>y=1^3-3=-2=>Đ`
`A.TXĐ:RR=>Đ`
`=>B.` sai
Hàm số y = l o g 2 ( 4 x - 2 x + m ) có tập xác định D = R khi
A. m > 1 4
B. m > 0
C. m ≥ 1 4
D. m < 1 4
Cho hàm số y = log2( 4x - 2x + m) có tập xác định D = R khi:
A. m ≥ 1 4
B. m > 1/4
C. m < -1/4
D. m > 0
Chọn B.
Hàm số có tập xác định là D = R khi và chỉ khi 4x - 2x + m > 0 mọi x. (*)
Đặt t = 2x > 0 khi đó (*) trở thành : t2 – t + m > 0 mọi t > 0.
Hay m > t - t2 mọi t > 0
Ta có suy ra
Có bao nhiêu giá trị nguyên của tham số m trên đoạn
[-2020; 2020] để hàm số f(x) = \(\dfrac{\sqrt{x^2-2x+3}}{x^2-2x+m-1}\) có tập xác định là R?
Hàm số y = log 2 ( 4 x - 2 x + m ) có tập xác định là D = ℝ khi
A . m ≤ 1 4
B . m ≥ 1 4
C . m > 1 4
D . m < 1 4
Chọn C
Hàm số y = log 2 ( 4 x - 2 x + m ) có tập xác định là D = ℝ
Đặt Khi đó, bất phương trình (1) trở thành:
Xét hàm số
Ta có: f'(t) = 2t + 1; f'(t) = 0 ⇔ t = 1 2
Bảng biến thiên:
Dựa vào bảng biến thiên, suy ra
Từ (*) suy ra