rut gon phan thuc
\(\dfrac{\left(-x\right)^5.a^2}{x^2.\left(-a\right)^3}\)
rut gon phan thuc \(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}\)
ĐK : \(a\ne b\ne c\)
\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{a+b+c}{2}\)
Viet moi don thuc sau thanh don thuc rut gon , cho ro phan bien va he so
a, \(2x^2y^3.\dfrac{1}{4}xy^3\left(-3xy\right)\)
b, \(\left(-2x^3y\right)^2.xy^2.\dfrac{1}{5}y^5\)
a) \(2x^2y^3.\dfrac{1}{4}xy^3\left(-3\right)xy\)
\(=\left(-3.2.\dfrac{1}{4}\right)x^4y^7\)
\(=\dfrac{-3}{2}x^4y^7\)
\(\Rightarrow Hệ\) số: \(\dfrac{-3}{2}\)
Phần biến: \(x^4y^7\)
b) \(\left(-2x^3y\right)^2.xy^2.\dfrac{1}{5}y^5\)
\(=\dfrac{4}{5}x^7y^9\)
\(\Rightarrow Phần\) biến: \(x^7y^9\)
Hệ số: \(\dfrac{4}{5}.\)
a/ \(2x^2y^3\cdot\dfrac{1}{4}xy^3\left(-3xy\right)\)
\(=\left[2\cdot\dfrac{1}{4}\cdot\left(-3\right)\right]\left(x^2.x.x\right)\left(y^3.y^3.y\right)\)
\(=-\dfrac{3}{2}x^4y^7\)
Phần biến: \(x^4y^7\)
Hệ số: \(-\dfrac{3}{2}\)
b/ \(\left(-2x^3y\right)^2\cdot xy^2\cdot\dfrac{1}{5}y^5=4x^6y^2\cdot xy^2\cdot\dfrac{1}{5}y^5\) \(=4\cdot\dfrac{1}{5}\left(x^6\cdot x\right)\left(y^2\cdot y^2\cdot y^5\right)=\dfrac{4}{5}x^7y^9\)
Phần biến: \(\dfrac{4}{5}\)
Hệ số: \(x^7y^9\)
rut gon bieu thuc
A=\(\left(\dfrac{\sqrt{X}+2}{X-9}-\dfrac{\sqrt{X}-2}{X+6\sqrt{X}+9}\right)\left(\sqrt{X}\dfrac{9}{\sqrt{X}}\right)\)
XEM CÓ SAI ĐỀ BÀI KHÔNG, MK RÚT GỌN RA TO LẮM
\(=\dfrac{x+5\sqrt{x}+6-x+5\sqrt{x}-6}{\left(\sqrt{x}+3\right)^2\cdot\left(\sqrt{x}-3\right)}\cdot\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{10\sqrt{x}}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}+3}=\dfrac{10}{\sqrt{x}+3}\)
rut gon phan thuc:
a, \(\frac{10x}{5x^2}\)
b,\(\frac{x\left(x^2-y^2\right)}{x^2\left(x+y\right)}\)
a/\(\frac{10x}{5x^2}=\frac{2}{x}\)
b/\(\frac{x\left(x^2-y^2\right)}{x^2\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}=\frac{x-y}{x}\)
Rut gon phan thuc
\(M=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
rut gon phan thuc:
1 \(\dfrac{x^2-18x-19}{x^2-1}\)
2 \(\dfrac{x\left(4x^2-8x+4\right)}{2x^3-2x^2}\)
1) \(\dfrac{x^2-18x-19}{x^2-1}=\dfrac{x^2-19x+x-19}{\left(x-1\right)\left(x+1\right)}=\dfrac{x\left(x-19\right)+x-19}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-19\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-19}{x-1}\)
2) \(\dfrac{x\left(4x^2-8x+4\right)}{2x^3-2x^2}=\dfrac{4x\left(x^2-2x+1\right)}{2x^2\left(x-1\right)}=\dfrac{4x\left(x-1\right)^2}{2x^2\left(x-1\right)}=\dfrac{2\left(x-1\right)}{x}\)
1.=\(\dfrac{(x^2+x)-(19x+19)}{(x+1)(x-1)}\)
=\(\dfrac{x(x+1)-19(x+1)}{(x+1)(x-1)}\)
=\(\dfrac{(x+1)(x-19)}{(x+1)(x-1)}\)
=\(\dfrac{x-19}{x-1}\)
Cho bieu thuc: \(Q=\left(\dfrac{x^2-2x}{2x^2+8}+\dfrac{2x^2}{x^2.\left(x-2\right)}\right).\left(\dfrac{x^2-x-2}{x^2}\right)\)
a, Rut gon bieu thuc Q
b, Tim gia tri ca x de Q co gia tri bang \(\dfrac{1}{4}\)
\(\dfrac{\left(x+2\right)^2}{x}\times\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)
rut gon bieu thuc tren
\(=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{x+2-x^2}{x+2}-\dfrac{x^2+6x+4}{x}\)
\(=\dfrac{\left(x+2\right)\left(-x^2+x+2\right)-x^2-6x-4}{x}\)
\(=\dfrac{-x^3+x^2+2x-2x^2+2x+4-x^2-6x-4}{x}\)
\(=\dfrac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
cho phan thuc :\(\frac{x^2-10x+25}{x^2-5x}\)\(\left(x\ne0;x\ne5\right)\)
a) Rut gon phan thuc
b) Tim x de phan thuc co gia tri bang 0
c) Tim x de phan thuc co gia tri bang \(\frac{5}{2}\)
ĐKXĐ : \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a) \(A=\frac{x^2-10x+25}{x^2-5x}\)
\(A=\frac{\left(x-5\right)^2}{x\left(x-5\right)}\)
\(A=\frac{x-5}{x}\)
b) Để phân thức bằng 0 thì \(x-5=0\Leftrightarrow x=5\)
Mà ĐKXĐ \(x\ne5\)=> ko có giá trị của x để phân thức bằng 0
c) Để phân thức bằng 0 thì :
\(\frac{x-5}{x}=\frac{5}{2}\)
\(2x-10=5x\)
\(-10=3x\)
\(x=\frac{-3}{10}\)
a,\(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\)
b,Để phân thức có giá trị bằng 0 thì \(\frac{x-5}{x}=0\)
Mà: Theo điều kiện ta có: \(x\ne0\)
nên để: \(\frac{x-5}{x}=0\)thì: \(x-5=0\Leftrightarrow x=5\)
c,Để phân thức có giá trị bằng 5/2 thì:
\(\frac{x-5}{x}=\frac{5}{2}\)
\(\Leftrightarrow2\left(x-5\right)=5x\)
\(\Leftrightarrow2x-10=5x\)
\(\Leftrightarrow2x-5x=10\)
\(\Leftrightarrow-3x=10\Rightarrow x=-\frac{10}{3}\)
=.= hk tốt!!