Cho tam giác có độ dài các cạnh là a,b,c và diện tích của tam giác là t,thoả mãn:(a+b+c)(a+b-c)=4t.Chứng minh tam giác đó là tam giác vuông
1, Áp dụng định lý Pytago. Chứng minh rằng nếu ta có a, b, c > 0 sao cho a = m2 + n2 ; b = m2 - n2 ; c = 2mn thì a, b, c là số đo 3 cạnh của tam giác vuông.
2, Các ạnh góc vuông của một tam giác vuông có độ dài a, b và diện tích bằng S. Tính các góc của tam giác vuông đó biết (a + b)2
3, Chứng minh rằng nếu a, b, c là độ dài ba cạnh của 1 tam giác vuông (với a là độ dài cạnh huyền) thì các số x, y, z sau đây cũng là độ dài cạnh của tam giác vuông: x = 9a + 4b +8c ; y = 4a + b+ 4c ; z = 8a + 4b + 7c
cho a,b,c là độ dài ba cạnh của một tam giác thoả mãn:
\(\Sigma\dfrac{c^{2013}}{a+b-c}=\Sigma a^{2012}\)
Hãy xđ dạng của tam giác đó
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\sum \frac{c^{2013}}{a+b-c}=\sum \frac{c^{4024}}{ac^{2011}+bc^{2011}-c^{2012}}\geq \frac{(\sum a^{2012})^2}{a^{2011}(b+c)+b^{2011}(c+a)+c^{2011}(b+a)-\sum a^{2012}}\)
Ta sẽ CM:
\(a^{2011}(b+c)+b^{2011}(c+a)+c^{2011}(b+a)-\sum a^{2012}\leq \sum a^{2012}\)
\(\Leftrightarrow a^{2011}(a-b)+a^{2011}(a-c)+b^{2011}(b-a)+b^{2011}(b-c)+c^{2011}(c-a)+c^{2011}(c-b)\geq 0\)
\(\Leftrightarrow \sum (a-b)(a^{2011}-b^{2011})\geq 0\Leftrightarrow \sum (a-b)^2(a^{2010}+...+b^{2010})\geq 0\) (luôn đúng)
Do đó: \(\sum \frac{c^{2013}}{a+b-c}\geq \frac{(\sum a^{2012})^2}{\sum a^{2012}}=\sum a^{2012}\)
Dấu "=" xảy ra khi $a=b=c$. Tức là $ABC$ là tam giác đều.
Cho a,b,c là các cạnh của tam giác vuông , h là độ daif đường cao ứng với cạnh huyền a . Chứng minh tam giác có độ dài 3 canh a+h , b+c và h là độ dài 3 cạnh tam giấc vuông.
Ký hiệu:
AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có
Xét hai t/g vuông AHC và ABC có
\(\widehat{C}\)chung
\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))
=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)
Xét t/g vuông ABC có
\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)
\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)
\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)
\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)
=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h
Sorry!!!
Phần ký hiệu sửa thành
Đường cao AH=h
a) Chứng minh rằng trong một tam giác, một góc sẽ là nhọn, vuông hay tù tùy theo cạnh đối diện với góc đó nhỏ hơn hay bằng hay lớn hơn hai lần đường trung tuyến kẻ tới cạnh đó
b) cho một tam giác có độ dài các cạnh là a,b,c đồng thời a-b=b-c. Điểm M là giao điểm của hai trung tuyến, P là giao điểm của các đường phân giác của góc trong tam giác đã cho. Chứng minh rằng MP song song với cạnh có độ dài bằng b
a) Chứng minh rằng trong một tam giác, một góc sẽ là nhọn, vuông hay tù tùy theo cạnh đối diện với góc đó nhỏ hơn hay bằng hay lớn hơn hai lần đường trung tuyến kẻ tới cạnh đó
b) cho một tam giác có độ dài các cạnh là a,b,c đồng thời a-b=b-c. Điểm M là giao điểm của hai trung tuyến, P là giao điểm của các đường phân giác của góc trong tam giác đã cho. Chứng minh rằng MP song song với cạnh có độ dài bằng
ch mik mk ich lại nha !!!
Cho 1 tam giác có độ dài 3 cạnh là a, b, c. Biết 20.a = 15. b = 12. c.
Chứng minh tam giác đó là tam giác vuông.
đk : a;b;c > 0
Theo bài ra ta có :
\(20a=15b=12c\Rightarrow\dfrac{20a}{60}=\dfrac{15b}{60}=\dfrac{12c}{60}\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
đề thiếu rồi bạn
Có \(20a=15b=12c\)
=> \(\left\{{}\begin{matrix}a=\dfrac{3}{5}c\\b=\dfrac{4}{5}c\end{matrix}\right.\)
Xét \(\Delta ABC\) có \(a^2+b^2=\left(\dfrac{3}{5}c\right)^2+\left(\dfrac{4}{5}c\right)^2=c^2\)
=> \(\Delta ABC\) là tam giác vuông (định lý Pytago đảo)
Lấy giấy trắng cắt tám tam giác vuông bằng nhau. Trong mỗi tam giác vuông đó, ta gọi độ dài các cạnh góc vuông là a và b, gọi độ dài cạnh huyền là c. Cắt hai tấm bìa hình vuông có cạnh bằng a+b
Đặt bốn tam giác vuông lên tấm bìa hình vuông như hình 121. Phần bìa không bị che lấp là một hình vuông có cạnh bằng c, tính diện tích phần bìa đó theo c
diện tích phần bìa hình vuông cạnh c là c2
Lấy giấy trắng cắt tám tam giác vuông bằng nhau. Trong mỗi tam giác vuông đó, ta gọi độ dài các cạnh góc vuông là a và b, gọi độ dài cạnh huyền là c. Cắt hai tấm bìa hình vuông có cạnh bằng a+b
Đặt bốn tam giác vuông lên tấm bìa hình vuông như hình 121. Phần bìa không bị che lấp là một hình vuông có cạnh bằng c, tính diện tích phần bìa đó theo c
diện tích phần bìa hình vuông cạnh c là c2
gọi a,b,c là độ dài 3 cạnh của tam giác ABC thoả mãn: a3+b3+c3=3abc.Chứng minh tam giác ABC đều.
a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Hay tam giác ABC đều
Cho abc là 3 độ dài các cạnh của một tam giác có chu vi là 1 thỏa mãn a/1-a + b/1-b + c/1-c = 3/2.Chứng minh tam giác đó là tam giác đều.Giúp tớ nhanh nhé!Cảm ơn nhiều!
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.
Câu 18: Cho hình vuông có độ dài cạnh hình vuông là 4 cm. Diện tích của hình vuông đó là?
A. 8( cm ). B. 16( cm )
C. 8( cm2 ) D. 16( cm2 )
Câu 19: Cho tam giác vuông, có độ dài hai cạnh góc vuông lần lượt là 6cm, 4cm. Diện tích của tam giác vuông đó là ?
A. 24( cm2 ) B. 14( cm2 )
C. 12( cm2 ) D. 10( cm2 )
Câu 20: Cho hình vuông có đường chéo là 6( dm ) thì diện tích là ?
A. 12( cm2 ) B. 18( cm2 )
C. 20( cm2 ) D. 24( cm2 )
Câu 21:Tam giác có độ dài cạnh đáy bằng a , độ dài đường cao là h. Khi đó diện tích tam giác được tính bằng công thức ?
A. a.h B. 1/3ah
C. 1/2ah D. 2ah
Câu 18: D
Câu 19: C
Câu 20: B
Câu 21: C
18. Chọn D
19. Chọn C
20. Chọn B
21. Chọn C