1.a,b,c là các số thực dương. CM \(\left(\dfrac{\sqrt{ab}}{\sqrt{a+b}}+\dfrac{\sqrt{bc}}{\sqrt{b+c}}\right)\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}\right)\le2\)
2. x,y là các số nguyên sao cho \(x^2-2xy-y^2\) ;\(xy-2y^2-x\) đều chia hết cho 5Chứng minh \(2x^2+y^2+2x+y\) cũng chia hết cho 5
3. cho \(a_1a_2...a_{50}\) là các số nguyên thoả mãn \(1\le a_1\le a_2...\le a_{50}\le50;a_1+a_2+...+a_{50}=100\) chứng minh rằng từ các số đã cho có thể chọn đc một vài số có tổng là 50
1. Giải hệ phương trình \(\left\{{}\begin{matrix}3x^2+y^2+4xy=8\\\left(x+y\right)\left(x^2+xy+2\right)=8\end{matrix}\right.\)
2. chứng minh rằng với moi số nguyên n ta luôn có \(\left[\left(27n+5\right)^7+10\right]^7+\left[\left(10n+27\right)^7+5\right]^7+\left[\left(5n+10\right)^7+27\right]^7⋮42\)
1Cho x,y,z >0 và xy+yz+zx=1. Chứng minh rằng \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2^x\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\) 2 Cho p,q là hai số nguyên tố thoả mãn \(p-1⋮p\) và \(p^3-1p⋮\) Chứng minh rằng p+q là số chính phương
1. Chứng minh rằng nếu \(p\ge2\) là một số tự nhiên sao cho \(\left\{{}\begin{matrix}2^p+2⋮p\\2^p+1⋮\left(p-1\right)\end{matrix}\right.\) thì số tự nhiên \(m=2^p+2\) cũng thoả mãn tính chất ấy ( nghĩa là khi đó thay m vào p thì đk vẫn thoả mãn \(\left\{{}\begin{matrix}2^m+2⋮m\\2^m+1⋮\left(m-1\right)\end{matrix}\right.\))