Cho a + b + c = 0. CMR: \(a^3+b^3+c^3=3abc\)
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
1, cho a+b+c=0
CMR: a3+b3+c3=3abc
2, cho a+b-c=0
CMR: a3+b3-c3=-3abc
1) Có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3-3abc=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
2)Có: \(a+b-c=0\)
\(\Leftrightarrow a+b=c\)
\(\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)
\(\Leftrightarrow a^3+b^3+3abc=c^3\)
\(\Leftrightarrow a^3+b^3-c^3=-3abc\)
Cho a+b+c=0. CMR: \(a^3+b^3+c^3=3abc\)
a +b +c=0
⇔\(\left(a+b+c\right)^3\)
⇔\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6abc=0\)
⇔\(a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)-3abc=0\)
⇔ \(a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)=3abc\)
Vì a+b+c= 0
⇒\(a^3+b^3+c^3=3abc\)
Chúc bạn học tốt!
a) Cho a2 + b2 + c2 + 3 = 2. (a + b + c)
CMR: a = b = c = 1
b) Cho (a + b + c)2 = 3. (ab + bc + ca)
CMR: a = b = c
c) Cho a + b + c = 0
CMR: a3 + b3 + c3 = 3abc
d) Cho a3 + b3 + c3 = 3abc
CMR: a + b + c = 0
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c
c) a + b + c = 0 suy ra a = -(b+c)
\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)
\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)
\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Do VT >=0 với mọi a, b, c nên a = b = c 1
tí đăng tiếp
Cho a+b+c=0 . CMR: a^3+b^3+c^3=3abc
\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)
\(=0+3abc=3abc\)
Cho a+b+c=0. CMR: a^3+b^3+c^3=3abc
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)
\(\Rightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(-c\right)\)
\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
(Nhớ k cho mình với nhá!)
Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc
(a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc
(a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
(a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc
thay a+b+c=0 ta được
03=a3+b3+c3+3.0(ab+bc+ac)-3abc
0=a3+b3+c3-3abc
=>a3+b3+c3=3abc
a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1)
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2]
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b)
thay vao(2) ta dc
=3abc
Cho a+b+c=0. CMR: a^3+b^3+c^3=3abc
Cho a+b+c =0 CMR a^3+b^3+c^3 = 3abc
Lời giải:
Từ $a+b+c=0\Rightarrow a+b=-c$
Theo HĐT đáng nhớ:
\((a+b)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab(a+b)\)
\(\Rightarrow a^3+b^3=(a+b)^3-3ab(a+b)=(-c)^3-3ab(-c)=-c^3+3abc\)
\(\Rightarrow a^3+b^3+c^3=-c^3+3abc+c^3=3abc\)
Ta có đpcm.
Cho a, b, c thỏa mán a+b+c=0
CMR: a^3+b^3+c^3=3abc
ta có a+b+c=0
=>a+b=-c
ta có a^3 +b^3+c^3
=(a+b)(a^2-ab+b^2)+c^3
=-c(a^2+b^2-ab)+c^3
=-c[(a+b)^2-2ab-ab]+c^3
= -c[(-c)^2-3ab]+c^3
= (-c)^3+3abc+c^3
=3abc
cho a+b+c=0
CMR a^3+b^3+c^3=3abc
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+ab^2+ac^2-a^2b-abc-ca^2+ba^2+b^3+bc^2-b^2a-b^2c-abc+ca^2+cb^2+c^3-abc-bc^2-ac^2=0\)
\(\Leftrightarrow a\left(a^2+b^2+c^2-ab-bc-ca\right)+b\left(a^2+b^2+c^2-ab-bc-ca\right)+c\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(luôn đúng)
\(\Rightarrowđpcm\)