Cho tam giác ABC vuông tại A. Đường cao AH, kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh rằng:
a)\(\dfrac{BE}{FC}=\left(\dfrac{AB}{AC}\right)^3\)
b) BC . BE . CF = AH3
Cho tam giác ABC vuông tại A; đường cao AH; kẻ HE;HF lần lươtj vuông góc với AB;AC
a) Cho góc B=60 độ,AC=6cm .Tính các cạnh và các góc còn lại của tam giác ABC
b) chứng minh \(AE\times AB=AF\times AC\)
c) chứng minh \(BC\times BE\times CF=AH^3\)
d)\(\frac{EB}{FC}=\left(\frac{AB}{AC}\right)^3\)
e)\(AB\times AC\times BE\times CF=\left(HE^2+HF^2\right)^2\)
Cho tam giác ABC vuông tại A. Đường cao AH, kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh:
a, E B F C = A B A C 3
b, B C . B E . C F = A H 3
a, Sử dụng hệ thức giữa cạnh góc vuông và hình chiếu lên cạnh huyền và cạnh huyền trong tam giác vuông HBA và HCA
b, Tương tự a) và áp dụng hệ thức giữa đường cao và hình chiếu cạnh góc vuông lên cạnh huyền trong tam giác vuông ABC
Bài 3: Cho ΔABC vuông tại A, đường cao AH. Kẻ HE, HF lần lượt vuông góc với AB, AC
a> Chứng minh \(\dfrac{EB}{FC}\) = \(\left(\dfrac{AB}{AC}\right)^3\)
B> BC . BE . CF = AH\(^3\)
a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{BA}:\dfrac{CH^2}{CA}\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)
\(=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
b: \(BC\cdot BE\cdot CF\)
\(=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)
\(=\dfrac{BC}{AH\cdot BC}\cdot AH^4=\dfrac{AH^4}{AH}=AH^3\)
Cho tam giác ABC vuông tại A đường cao AH . kẻ HE,Hf lần lượt vuông góc với AB,AC
chứng minh EB/FC=(AB/AC)^3
cho tam giác ABC vuông tại A đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB, AC. C/m
a) \(\dfrac{EB}{FC}\)=\(\left(\dfrac{AB}{AC}\right)^3\)
b) BC.BE.CF = AH3
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh:
a, \(\frac{EB}{FC}=\left(\frac{AB}{AC}\right)^3\)
b, \(\frac{1}{BK^2}=\frac{1}{BC^2}=\frac{1}{4HA^2}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(BE\cdot BA=BH^2\)
hay \(BE=\dfrac{BH^2}{BA}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:
\(CF\cdot CA=CH^2\)
hay \(CF=\dfrac{CH^2}{CA}\)
Ta có: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{CA}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\dfrac{AB^4\cdot AC}{AC^4\cdot AC}=\dfrac{AB^3}{AC^3}\)
Cho tam giác ABC vuông tại A có đường sao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh các đẳng thức sau: a) BC2=2AH2+BH2+CH2 b) BE/CF=AB3/AC3 c) BE2=BH3/BC d) AH3=BC×BE×CF e) HE×HF=AH3/BC
Cho tam giác abc vuông tại a, đường cao ah. Kẻ he vuông góc với ab tại e, hf vuông góc ac tại f
A) cho bh =3cm,ah=4cm.tính ae,be
B) chứng minh:tam giác abc đồng dạng tam giác afe
C) chứng minh :bc^2=3ah^2+be^2+cf^2
Cho tam giác \(ABC\) vuông tại \(A\left( {AB < AC} \right)\). Kẻ đường cao \(AH\left( {H \in BC} \right)\).
a) Chứng minh rằng \(\Delta ABH\backsim\Delta CBA\), suy ra \(A{B^2} = BH.BC\).
b) Vẽ \(HE\) vuông góc với \(AB\) tại \(E\), vẽ \(HF\) vuông góc với \(AC\) tại \(F\). Chứng minh rằng \(AE.AB = AF.AC\).
c) Chứng minh rằng \(\Delta AFE\backsim\Delta ABC\).
d) Qua \(A\) vẽ đường thẳng song song với \(BC\) cắt đường thẳng \(HF\) tại \(I\). Vẽ \(IN\) vuông góc với \(BC\) tại \(N\). Chứng minh rằng \(\Delta HNF\backsim\Delta HIC\).
a) Vì \(AH\) là đường cao nên \(\widehat {AHB} = \widehat {AHC} = 90^\circ \)
Xét tam giác \(ABH\) và tam giác \(CBA\) có:
\(\widehat B\) (chung)
\(\widehat {AHB} = \widehat {CAB} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta ABH\backsim\Delta CBA\) (g.g).
Do đó, \(\frac{{AB}}{{CB}} = \frac{{BH}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra, \(A{B^2} = BH.BC\) .
b)
- Vì \(HE\) vuông góc với \(AB\) nên \(\widehat {HEA} = \widehat {HEB} = 90^\circ \)
Xét tam giác \(AHE\) và tam giác \(ABH\) có:
\(\widehat {HAE}\) (chung)
\(\widehat {HEA} = \widehat {AHB} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta AHE\backsim\Delta ABH\) (g.g).
Do đó, \(\frac{{AH}}{{AB}} = \frac{{AE}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra, \(A{H^2} = AB.AE\) . (1)
- Vì \(HF\) vuông góc với \(AC\) nên \(\widehat {HFC} = \widehat {HFA} = 90^\circ \)
Xét tam giác \(AHF\) và tam giác \(ACH\) có:
\(\widehat {HAF}\) (chung)
\(\widehat {AFH} = \widehat {AHC} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta AHF\backsim\Delta ACH\) (g.g).
Do đó, \(\frac{{AH}}{{AC}} = \frac{{AF}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra, \(A{H^2} = AF.AC\) . (2)
Từ (1) và (2) suy ra, \(AE.AB = AF.AC\) (điều phải chứng minh)
c) Vì \(AE.AB = AF.AC \Rightarrow \frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\).
Xét tam giác \(AFE\) và tam giác \(ABC\) có:
\(\widehat A\) (chung)
\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\) (chứng minh trên)
Suy ra, \(\Delta AFE\backsim\Delta ABC\) (c.g.c).
d) Vì \(HF\) vuông góc với \(AC\) nên \(CF \bot HI\), do đó, \(\widehat {CFH} = \widehat {CFI} = 90^\circ \).
Vì \(IN \bot CH \Rightarrow \widehat {CBI} = \widehat {HNI} = 90^\circ \).
Xét tam giác \(HFC\) và tam giác \(HNI\) có:
\(\widehat {CHI}\) (chung)
\(\widehat {HFC} = \widehat {HNI} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta HFC\backsim\Delta HNI\) (g.g).
Suy ra, \(\frac{{HF}}{{HN}} = \frac{{HC}}{{HI}}\) (hai cặp cạnh tương ứng cùng tỉ lệ)
Do đó, \(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\).
Xét tam giác \(HNF\) và tam giác \(HIC\) có:
\(\widehat {CHI}\) (chung)
\(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\) (chứng minh trên)
Suy ra, \(\Delta HNF\backsim\Delta HIC\) (c.g.c).