cho tam giác abc . đường cao bd cắt ce tài h . chứng minh : 4 điểm a,d,h,e thuộc 1 đường tròn
Cho tam giác ABC nhọn ; có 2 đường cao BD và CE cắt nhau tại H.
a. Chứng minh rằng 4 điểm A , D , H , E thuộc 1 đường tròn.
b. Chứng minh 4 điểm B , C , E , D thuộc 1 đường tròn.
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=180^0\)
nên AEHD là tứ giác nội tiếp
hay A,E,H,D cùng thuộc 1 đường tròn
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)
nên BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
Cho tam giác ABC đều, hai đường cao BD và CE cắt nhau ở H, AH cắt BC tại M
a) chứng minh 4 điểm A,D,H,E cùng thuộc một đường tròn
b) chứng minh MD là tiếp tuyến của đường tròn đi qua bốn điểm A,D,H,E
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp đường tròn đường kính AH
b: Gọi O là trung điểm của AH
ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>ADHE nội tiếp (O)
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH vuông góc BC tại M
ΔABC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Xét tứ giác BEHM có
\(\widehat{BEH}+\widehat{BMH}=180^0\)
=>BEHM là tứ giác nội tiếp
\(\widehat{OEM}=\widehat{OEH}+\widehat{MEH}\)
\(=\widehat{OHE}+\widehat{MBD}\)
\(=\widehat{MHC}+\widehat{MBD}=90^0-\widehat{MCH}+\widehat{MBD}=90^0\)
=>EM là tiếp tuyến của (O)
Cho tam giác ABC nhọn. Các đường cao BD, CE cắt nhau tại H.a) Chứng minh 4 điểm B , D , H , E cùng thuộc một đường tròn.
Sửa đề: B,D,C,E
BD\(\perp\)AC
=>\(\widehat{BDC}=\widehat{ADB}=90^0\)
CE\(\perp\)AB
=>\(\widehat{AEC}=\widehat{BEC}=90^0\)
Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
=>B,E,D,C cùng thuộc một đường tròn
Cho tam giác ABC có 2 đường cao BD và CE cắt nhau tại H.
a. Chứng minh 4 điểm A,D,H,E thuộc 1 đường tròn.
b. Gọi (O) là đường tròn đi qua 4 điểm A,D,H,E và M là trung điểm BC.Chứng minh ME là tiếp tuyến (O)
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
nên ADHE là tứ giác nội tiếp
hay A,D,H,E cùng thuộc một đường tròn
Cho tam giác ABC có 2 đường cao BD và CE cắt nhau tại H.
a. Chứng minh 4 điểm A,D,H,E thuộc 1 đường tròn.
b. Gọi (O) là đường tròn đi qua 4 điểm A,D,H,E và M là trung điểm BC.Chứng minh ME là tiếp tuyến (O)
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
Do đó: ADHE là tứ giác nội tiếp
hay A,D,H,E cùng thuộc 1 đường tròn
Cho tam giác ABC nhọn , các đường cao BD và CE cắt nhau tại H . Chứng minh :
a) Bốn điểm A , D, H, E cùng thuộc 1 đường tròn .
b) Bốn điểm B , E , D , C cùng thuộc 1 dường tròn.
Cho tam giác ABC đều có cạnh = a, các đường cao BD và CE cắt nhau tại H
a) Chứng minh: 4 điểm B,E,D,C thuộc cùng 1 đường tròn. Hãy xác định tâm và bán kính của đường tròn ấy
b) Chứng minh: Điểm H nắm trong đường tròn và điểm A nằm ngoài đường tròn đi qua 4 điểm B,E,D,C
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp
Tâm là trung điểm của BC
Bán kính là \(\dfrac{BC}{2}=\dfrac{a}{2}\)
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O. Đường cao BD, CE cắt nhau ở H, BC cắt DE tại F, AF cắt đường tròn tâm O tại K. Chứng minh 5 điểm A, D, H , E, K cùng thuộc một đường tròn
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A: AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H).
a) Chứng minh bốn điểm A, H, C, E cùng thuộc một đường tròn.
b) Chứng minh AH = BD; CE và DE là tiếp tuyến đường tròn đường kính BC.
c) Kẻ đường cao HK của tam giác HDE cắt BE tại I. Chứng mình 1 là trung điểm của HK.