a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=180^0\)
nên AEHD là tứ giác nội tiếp
hay A,E,H,D cùng thuộc 1 đường tròn
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)
nên BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=180^0\)
nên AEHD là tứ giác nội tiếp
hay A,E,H,D cùng thuộc 1 đường tròn
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)
nên BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
Cho tam giác DEF nhọn , vẽ 2 đường cao DM và EN cắt nhau tại I.
a. Chứng minh 4 điểm F , N , I , M thuộc 1 đường tròn.
b, Chứng minh 4 điểm D , N , M , E thuộc 1 đường tròn
Cho tam giác ABC đều có cạnh = a, các đường cao BD và CE cắt nhau tại H
a) Chứng minh: 4 điểm B,E,D,C thuộc cùng 1 đường tròn. Hãy xác định tâm và bán kính của đường tròn ấy
b) Chứng minh: Điểm H nắm trong đường tròn và điểm A nằm ngoài đường tròn đi qua 4 điểm B,E,D,C
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Câu 4. (2,0 điểm) Cho đường tròn (0; 2, 5cm) có dây BC = 3c cố định. Trên cung lớn BC lấy điểm A bất kì sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H (D in AC E AB). 1) Chứng minh tứ giác BEDC là tứ giác nội tiếp. 2) Kẻ đường kinh AK của đường tròn (O; R) Chứng minh: góc EDB = góc CBK . 3) Tính bán kính đường tròn ngoại tiếp tam giác DEH.
3. Cho tam giác ABC có ba góc nhọn , các đường cao BE và CF cắt nhau tại H. a ) Chứng minh B , F , E , C cùng thuộc một đường tròn , xác định tâm O. b ) Chứng minh A , E , H , F , cùng thuộc một đường tròn , xác định tâm I. c ) Chứng minh : AH vuông BC và OI vuông EF . đường tròn ( O ) có đường Gấp á huhu
Cho tam giác ABC cân tại A, BD là đường cao, E là trung điểm của BC, H là giao điểm của
AE và BD.
a) Chứng minh 4 điểm A, D, E, B cùng thuộc đường tròn tâm O.
b) Xác định tâm I của đường tròn đi qua 3 điểm H, D, C.
c) Chỉ ra 2 điểm chung của đường tròn tâm (O) và đường tròn (I).
Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.Chứng minh rằng:
a. 4 điểm E,M,N,F cùng thuộc 1 đường tròn
b. 4 điểm D,M,I,N cùng thuộc 1 đường tròn
Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.Chứng minh rằng:
a. 4 điểm E,M,N,F cùng thuộc 1 đường tròn
b. 4 điểm D,M,I,N cùng thuộc 1 đường tròn