Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Trí Kiên
Xem chi tiết
Phượng Phạm
Xem chi tiết
Nguyễn Đăng Nhân
4 tháng 7 2023 lúc 15:05

A=1+2+3+4+5+...+50
A=(50+1)+(49+2)+(48+3)+...
A=(50+1)*[(50-1):1+1]:2
A=51*25=1275
B=2+4+6+8+10+...+100
B=(100+2)+(98+4)+(96+6)+...
B=(100+2)*[(100-2):2+1]:2
B=102*25=2550
C=1+4+7+10+13+...+99
C=(99+1)+(96+4)+(93+7)+...
C=(99+1)*[(99-1):3+1]:2
C=100*16.8333=1683.33
D=2+5+8+11+14+...+98
D=(98+2)+(95+5)+(92+8)+...
D=(98+2)*[(98-2):3+1]:2
D=100*16.5=1650
E=1+2+3+4+5+...+25
E=(25+1)+(24+2)+(23+3)+...
E=(25+1)*[(25-1):1+1]:2
E=26*12.5=325
F=2+4+6+8+10+...+50
F=(50+2)+(48+4)+(46+6)+...
F=(50+2)*[(50-2):2+1]:2
F=52*12.5=650
G=3+5+7+9+11+...+51
G=(51+3)+(49+5)+(47+7)+...
G=(51+3)*[(51-3):2+1]:2
G=54*12.5=675
H=1+5+9+13+17+...+81
H=(81+1)+(77+5)+(73+9)+...
H=(81+1)*[(81-1):4+1]:2
H=82*10.5=861

Gia Hân
4 tháng 7 2023 lúc 15:12

a) A =1 + 2 + 3 + 4 + … + 50

Số số hạng của dãy số trên là:

(50 - 1) : 1 + 1 = 50 (số số hạng)

  A =(1+ 50) . 50 : 2

      = 51 . 50 : 2

      = 2550 : 2

      = 1275

b) B = 2 + 4 + 6 + 8 + ... + 100

Số số hạng của dãy số trên là:

(100 - 2) : 2 + 1 = 50 (số hạng)

Có số cặp là:

50 : 2 = 25 (cặp)

Tổng của 1 cặp là:

100 + 2 = 102

Tổng của dãy số là:

25 .102 = 2550

c) C = 1 + 3 + 5 + 7 + … + 99

Số số hạng của dãy trên là:

(99 - 1) : 2 + 1 = 50 (số số hạng)

C = (1 + 99) . 50 : 2

  = 100 . 50 : 2

  = 5000 : 2

  = 2500

d) D = 2 + 5 + 8 + 11 + … + 98

Số số hạng của dãy trên là:

 (98 - 2) : 3 + 1 = 33 (số số hạng)

=> Dãy trên có 16 cặp

D = (95 + 2) .16 + 98

   = 97 . 16 + 98

   = 1552 +98

   = 1650

 

 

 

Trần Ngọc Anh Thư
Xem chi tiết
when the imposter is sus
18 tháng 9 2023 lúc 11:04

1)

a) -(2+5) = -2 - 5 = -7

b) +(-3+6) = -3 + 6 = 3

c) (-50+3) = -50 + 3 = -47

d) -(-2+3) = 2 - 3 = -1

e) -(10-3) = -10 + 3 = -7

f) -(-3)-(-3+1) = 3 + 3 - 1 = 5

g) (-5)+(-2+10) = -5 - 2 + 10 = 3

2)

a) -50+120+(-150)-20+30

= -(50 + 20) + (120 + 30 - 150)

= -70

b) 265-70+(-65)-30+15

= (265 - 65) - (70 + 30) + 15

= 200 - 100 + 15 = 115

c) -17+185-183+(-85)-63

= (185 - 85) - (183 + 17) - 63

= 100 - 200 - 63 = -163

d) -30+60+(-170)-260+19

= -(170 + 30) - (260 - 60) + 19

= -200 - 200 + 19 = -381

Huyền Nguyễn
Xem chi tiết
trangtrang
Xem chi tiết
Akai Haruma
23 tháng 3 2017 lúc 1:31

Lời giải:

Vì mặt cầu tiếp xúc với đường thẳng nên độ dài bán kính chính bằng khoảng cách từ tâm đến đường thẳng đó

Ta thấy đường thẳng $(d)$ đi qua \(M(-1,2,-3)\) và có vector chỉ phương là \(\overrightarrow{u}=(2,1,-1)\)

\(\Rightarrow d(A,d)=\frac{|[\overrightarrow{u},\overrightarrow{MA}]|}{|\overrightarrow{u}|}=\frac{10\sqrt{3}}{\sqrt{6}}=5\sqrt{2}=R\rightarrow R^2=50\)

Do đó PTMC là: \((x-1)^2+(y+2)^2+(z-3)^2=50\)

Đáp án C

Vũ Yến Nhi
Xem chi tiết
phạm minh vũ
Xem chi tiết
Minh Hiếu
12 tháng 10 2023 lúc 12:06

\(2A-A=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+...+2^{20}\right)\)

\(A=2^{21}-2\)

B tương tự câu A

\(5C-C=\left(5^2+5^3+...+5^{51}\right)-\left(5+5^2+...+5^{50}\right)\)

\(C=\dfrac{5^{51}-5}{4}\)

\(3D-D=3+3^2+...+3^{101}-\left(1+3+...+3^{100}\right)\)

\(D=\dfrac{3^{101}-1}{2}\)

Nguyễn Đăng Nhân
12 tháng 10 2023 lúc 12:10

\(A=2^1+2^2+2^3+...+2^{20}\)

\(2\cdot A=2^2+2^3+2^4+...+2^{21}\)

\(A=2^{21}-2\)

 

\(B=2^1+2^3+2^5+...+2^{99}\)

\(4\cdot B=2^3+2^5+2^7+...+2^{101}\)

\(B=\)\(\left(2^{101}-2\right):3\)

 

\(C=5^1+5^2+5^3+...+5^{50}\)

\(5\cdot C=5^2+5^3+5^4+...+5^{51}\)

\(C=(5^{51}-5):4\)

 

\(D=3^0+3^1+3^2+...+3^{100}\)

\(3\cdot D=3^1+3^2+3^3+...+3^{101}\)

\(D=(3^{101}-1):2\)

phạm minh vũ
12 tháng 10 2023 lúc 12:13

giải chi tiết ý b ddc ko

 

 

títtt
Xem chi tiết

a: \(A=2^{\dfrac{1}{3}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{3}+\dfrac{2}{3}}=2^{\dfrac{3}{3}}=2^1=2\)

b: \(B=36^{\dfrac{3}{2}}=\left(6^2\right)^{\dfrac{3}{2}}=6^{2\cdot\dfrac{3}{2}}=6^3=216\)

c: \(C=36^{\dfrac{3}{2}}\cdot\left(\dfrac{1}{6}\right)^2=\left(6^2\right)^{\dfrac{3}{2}}\cdot\dfrac{1}{6^2}=\dfrac{6^{2\cdot\dfrac{3}{2}}}{6^2}=\dfrac{6^3}{6^2}=6\)

d: \(D=\sqrt{81}\cdot\left(\dfrac{1}{3}\right)^2=9\cdot\dfrac{1}{3^2}=9\cdot\dfrac{1}{9}=1\)

e: \(E=\left(3+2\sqrt{2}\right)^{50}\cdot\left(3-2\sqrt{2}\right)^{50}\)

\(=\left[\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\right]^{50}\)

\(=\left(9-8\right)^{50}=1^{50}=1\)

f: \(F=120^{\sqrt{5}+1}\cdot120^{3-\sqrt{5}}\)

\(=120^{\sqrt{5}+1+3-\sqrt{5}}=120^4\)

g: \(G=\left(3+2\sqrt{2}\right)^{2019}\cdot\left(3\sqrt{2}-4\right)^{2018}\)

\(=\left(3+2\sqrt{2}\right)^{2018}\cdot\left(3\sqrt{2}-4\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=\left[\left(3+2\sqrt{2}\right)\left(3\sqrt{2}-4\right)\right]^{2018}\left(3+2\sqrt{2}\right)\)

\(=\left(9\sqrt{2}-12+12-8\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=\left(\sqrt{2}\right)^{2018}\cdot\left(3+2\sqrt{2}\right)=2^{\dfrac{1}{2}\cdot2018}\cdot\left(3+2\sqrt{2}\right)\)

\(=2^{1009}\cdot\left(3+2\sqrt{2}\right)\)

nguyen bich thuan
Xem chi tiết