(3x+y)\(^2\)-2(x+y)(3x+y)+(x+y)\(^2\)
phân tích đa thức thành nhân tử
(3x+1)^2-(3x-1)^2
(x+y)^2-(x-y)^2
(x+y)^3-(x-y)^3
x^3+y^3+z^3-3xyz
\(\left(3x+1\right)^2-\left(3x-1\right)^2\)
\(=\left(3x+1-3x+1\right)\left(3x+1+3x-1\right)\)
\(=2\cdot6x\)
\(=12x\)
_________
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=2x\cdot2y\)
\(=4xy\)
\(\left(x+y\right)^3+\left(x-y\right)^3\)
\(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=2x\cdot\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)
\(=2x\cdot\left(x^2+3y^2\right)\)
______
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3+3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2-xy-xz-yz\right)\)
a) x^2+x-y^2+y
b) 3x^2+3y^2-6xy-12
c) 3x+3y-x^2-2xy-y^2
d) x^3-x+3x^2+3xy^2-y+y^3
a) Nhóm x^2 và y^2 ; x và y
b) Nhóm 3 hạng tử đầu lại vs nhau . Sau cùng xuất hiện nhân tử chung là 3
c) Nhóm 2 hạng tử đầu với nhau. ba hạng tử còn lại với nhau .
d) .....
D,ghép đầu với cuối là hằng dẳng thức 2 cái giữa với nhau là nhân tử chung là 3x
CMR
a)(3x-5)(3x+5)=9x^2-25
b)x^3-y^3=(x-y)(x^2+xy+y^2)
c)x^2+y^2=(x+y)^2-2xy
a) \(\left(3x-5\right)\left(3x+5\right)=9x^2-25\Leftrightarrow9x^2+15x-15x-25=9x^2-25\Leftrightarrow9x^2-25=9x^2-25\)(đúng)
b) \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\Leftrightarrow x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\Leftrightarrow x^3-y^3=x^3-y^3\)(đúng)
c) \(x^2+y^2=\left(x+y\right)^2-2xy\Leftrightarrow x^2+y^2=x^2+y^2+2xy-2xy\Leftrightarrow x^2+y^2=x^2+y^2\)(đúng)
a: \(\left(3x-5\right)\left(3x+5\right)\)
\(=9x^2+15x-15x-25\)
\(=9x^2-25\)
b: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\)
c: \(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)
\(=x^2+y^2\)
CMR
a)(3x-5)(3x+5)=9x^2-25
b)x^3-y^3=(x-y)(x^2+xy+y^2)
c)x^2+y^2=(x+y)^2-2xy
a: Ta có: \(\left(3x-5\right)\left(3x+5\right)\)
\(=9x^2+15x-15x-25\)
\(=9x^2-25\)
b: Ta có: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\)
c: Ta có: \(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)
\(=x^2+y^2\)
tìm khoảng đồng biến nghịch biến
a) \(y=\dfrac{x^2+3x+2}{3x+2}\)
b) \(y=\sqrt{3x+6x^2}\)
c) \(y=\sqrt{16-x^2}\)
d) \(y=\dfrac{x^2-2x+2}{x^2+3}\)
a) -(x-y)(x2+xy-1)
b) x2(x-1)-(x2+1)(x-y)
c) (3x-2)(2x-1)+(-5x-1)(3x+2)
d) (3x-5)(2x+11)-(2x3)(3x+7)
Bài 2: Tính giá trị biểu thức
C=x(x2-y)-x2(x+y)+y(x2-x) tại x=1/2, y=-1
a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)
=-(x3-xy2-x+y)
=-x3+xy2+x-y
b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y
=-x2+x2y-x+y
c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2
=-9x2-20x
d) hình như bạn ghi lỗi
Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)
=x3-xy-x3-x2y+x2y-xy
=-2xy
Thay x=1/2,y=-1 vào C, ta có:
C=-2.1/2.(-1)=1
Vậy C=1 khi x=1/2 và y=-1.
thực hiện phép chia
a (4x^5-8x^3):(-2x^3)
b(9x^3-12x^2 + 3x ) : (-3x)
c (xy^2 + 4x^2y^3 -3x^2y^4):(-1/2x^2y^3)
d[2(x-y)^3-7(y-x)^2 - (y-x)] : (x-y)
e[(x^3 - y) ^5 -2(x-y)^4 + 3(x-y)^2] :[5(x-y)^2]
rút gọn rồi tính giá trị biểu thức sau
a) (3x-2)2+2x(3x-2)x(3x+2)+(3x+2)2tại x =\(\dfrac{-1}{3}\)
b) (x+y-7)2 -2x(x+y-7)x(y-6)+(y+6) tại x=101
c) 4x2 -20x+27 tại x = 52,5
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
thu gọn các biểu thức sau:
a) 2(x-1)(x+1)+(x-1)^2+(x+1)^2
b) (x-y+1)2+(1-y)2+2(x-y+1)(y-1)
c) (3x+1)2-2(3x+1)(3x+5)+(5x+5)2
\(a,2\left(x-1\right)\left(x+1\right)+\left(x-1\right)^2+\left(x+1\right)^2\)
\(=2\left(x^2-1\right)+x^2-2x+1+x^2+2x+1\)
\(=2x^2-2+2x^2+2=4x^2\)
\(b,\left(x-y+1\right)^2+\left(1-y\right)^2+2\left(x-y+1\right)\left(y-1\right)\)
\(=\left(x-y+1\right)^2+2\left(x-y+1\right)\left(y-1\right)+\left(y-1\right)^2\)
\(=\left[\left(x-y+1\right)+\left(y-1\right)\right]^2\)
\(=\left[x-y+1+y-1\right]^2=x^2\)
đề cuối phải sửa cái cuối thành \(\left(3x+5\right)^2\)
\(c,\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2=\left[3x+1-3x-5\right]^2=16\)
20 Rút gọn
a) (2x-y)(2x+y)-(2x+y)^2 ; b) (x-3)(x^2+3x+9)-(5-x)^2
c) (2x+y)(4x^2-2xy+y^2)-(2x+y)^3 ; d) (3x-5)^2-(3x+5)^2
\(a,\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)^2\)
\(=4x^2-y^2-4x^2-4xy+y^2\)
\(=-4xy\)
\(b,\left(x-3\right)\left(x^2+3x+9\right)-\left(5-x\right)^2\)
\(=x^3-27-25+10x-x^2\)
\(=x^3-x^2+10x-52\)
\(c,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x+y\right)^3\)
\(=8x^3+y^3-4x^2-4xy-y^2\)
\(d,\left(3x-5\right)^2-\left(3x+5\right)^2\)
\(=\left(3x-5-3x-5\right)\left(3x-5+3x+5\right)\)
\(=-10.6x=-60x\)