Tìm x y biết :
x/5 = y/3 x+y=16
Mong đc giúo ạ
Tìm x, biết:
a, |x-1/2|+1/3=2/3
b, x/-2=y/5 và x-y=14
Giúp mik đc ko ạ???
\(a,\left|x-\dfrac{1}{2}\right|+\dfrac{1}{3}=\dfrac{2}{3}\\ \Rightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{3}\\x-\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\\ b,\dfrac{x}{-2}=\dfrac{y}{5}=\dfrac{x-y}{-2-5}=\dfrac{14}{-7}=-2\\ \Rightarrow x=-2.\left(-2\right)=4;y=-2.5=-10\)
a)
\(\left|x-\dfrac{1}{2}\right|+\dfrac{1}{3}=\dfrac{2}{3}\\ \left|x-\dfrac{1}{2}\right|=\dfrac{1}{3}\\ \left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{3}\\x-\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}\\x=-\dfrac{1}{3}+\dfrac{1}{2}\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{1}{6}\end{matrix}\right.\)
b)
\(\dfrac{x}{-2}=\dfrac{y}{5}\)
mà `x-y=14` nên áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{-2}=\dfrac{y}{5}=\dfrac{x-y}{-2-5}=\dfrac{14}{-7}=-2\\ =>\left\{{}\begin{matrix}x=-2\cdot\left(-2\right)=4\\y=-2\cdot5=-10\end{matrix}\right.\)
\(y=-\frac{x^3}{3}+2x^2-mx+1\)
\(y'=-x^2+4x-m\)
Để hàm số luôn nghịch biến trên \(ℝ\)thì \(y'\le0\)với mọi \(x\inℝ\).
Suy ra \(-x^2+4x-m\le0\)với mọi \(x\inℝ\).
\(\Leftrightarrow\hept{\begin{cases}-1< 0\\\Delta'\le0\end{cases}}\Leftrightarrow4+m\le0\Leftrightarrow m\le-4\).
3.Tìm hai số x và y, biết: x/3 = y/-5 và x-y = 16
Gấp ạ
Cho biết hai đại lượng x và y tỉ lệ thuận với nhau và khi x = 5 và y = 3
a) Hãy biểu diễn y theo x
b) Tìm hệ số tỉ lệ của x đối với y
c) Tính y khi x = -5; x = 10
Giúp mình đc k ạ, mik đg cần gấp lắm!!
Chứng minh rằng : x^2-2xy+y^2+1 >0 với mọi số thực x,y Giúo e với ạ. Em cần lời giải chi tiết
Ta có: \(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\)
Mà \(1>0\)
\(\Rightarrow\left(x-y\right)^2+1>0\forall x,y\left(đpcm\right)\)
Tìm 2 số x , y biết
a, x/2 = y/5 và x + y = -21
b, 5x = 3y và x - y = 10
c, x/5 = y/2 và 3x - 2y = 44
d, x/3 = y/16 và 3x - y = 35
giúp mình vs ạ , mình cần gấp, cảm ơn ạ !
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-21}{7}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{matrix}\right.\)
b.
\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{10}{-2}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=5.\left(-5\right)=-25\end{matrix}\right.\)
c.
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{-2y}{-4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.4=20\\y=2.4=8\end{matrix}\right.\)
d.
\(\dfrac{x}{3}=\dfrac{y}{16}=\dfrac{3x}{9}=\dfrac{-y}{-16}=\dfrac{3x-y}{9-16}=\dfrac{35}{-7}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=16.\left(-5\right)=-80\end{matrix}\right.\)
Tìm các số nguyên x, y biết:
a) x . y = 3
b) x . (y + 1) = 5
c) (x – 2) . (y + 3) = 7
giúp mik với ạ
a,x.y=3=1x3=3x1=-1x(-3)=-3x(-1).
Vậy (x,y)=(1,3)=(3,1)=(-1,-3)=(-3,-1)
b,x.(y+1)=5=1x5=5x1=-1x(-5)=-5x(-1)
=>
x | 1 | 5 | -1 | -5 |
y+1 | 5 | 1 | -5 | -1 |
y | 4 | 0 | -6 | -2 |
Vậy (x,y)=(1,4)=(5,0)=(-1,-6)=(-1,-2).
c,(x-2)(y+3)=7=1x7=7x1=-1x(-7)=-7(-1)
=>
x-2 | 1 | 7 | -1 | -7 |
y+3 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 4 | -2 | -10 | -4 |
Vậy (x,y)=(3,4)=(9,-2)=(1,-10)=(-5,-4).
Tìm 3 số x,y,z biết rằng x/2=y/4,y/5=z/3 và x-y+z=4
giúp e với ạ>
\(\dfrac{x}{2}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{20}=\dfrac{z}{12}\)
Áp dụng t/c của dãy số bằng nhau, ta có: \(\dfrac{x-y+z}{10-20+12}=\dfrac{4}{2}=2\)
\(\dfrac{x}{10}=2\Rightarrow x=20\)
\(\dfrac{y}{20}=2\Rightarrow y=40\)
\(\dfrac{z}{12}=2\Rightarrow z=24\)
x/10=y/20=z/12
x-y+z/=10-20+12=4/2=2
x=2.10=20
y=2.20=40
z=2.12=24
1.Tìm x,y,z biết :
a)2x/3 = 3y/4 =4z/5 và x+y+z = 49
b)x/5 = y/3= và x2 - y2 =4
c)x/y+z+1 =y/z+x+1 =z/x+y-2= x+y+z
Giúp mik vs ạ , cảm ơn mn
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)