Gpt : \(x^4-2x+\dfrac{1}{2}=0\)
gpt : \(\sqrt{\dfrac{x^2-2x+1}{x^2-6+9}}=0\)
\(\sqrt{\dfrac{x^2-2x+1}{x^2-6x+9}}=0\) ( x # 3 )
⇔ \(\sqrt{\dfrac{\left(x-1\right)^2}{\left(x-3\right)^2}}=0\)
⇔ \(x=1\left(TM\right)\)
Vậy ,...
GPT :
\(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
Lời giải:
ĐKXĐ:.......
$PT\Leftrightarrow \frac{4}{x}-x=\sqrt{2x-\frac{5}{x}}-\sqrt{x-\frac{1}{x}}$
$\Leftrightarrow \frac{4}{x}-x = \frac{(2x-\frac{5}{x})-(x-\frac{1}{x})}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}$
$\Leftrightarrow \frac{4}{x}-x = \frac{x-\frac{4}{x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}$
$\Leftrightarrow (\frac{4}{x}-x)\left[1+\frac{1}{\sqrt{2x-\frac{5}{x}}+\sqrt{x-\frac{1}{x}}}\right]=0$
Hiển nhiên biểu thức trong ngoặc vuông luôn dương nên $\frac{4}{x}-x=0$
$\Rightarrow 4-x^2=0$
$\Leftrightarrow x=\pm 2$
Thử lại thấy $x=2$ thỏa mãn.
Vậy.......
\(\Leftrightarrow x-\dfrac{4}{x}=\sqrt{x-\dfrac{1}{x}}-\sqrt{2x-\dfrac{5}{x}}\)
\(x-\dfrac{4}{x}=\dfrac{\dfrac{4}{x}-x}{\sqrt{x-\dfrac{1}{x}}+\sqrt{2x-\dfrac{5}{x}}}\)
x-4/x>0
=>4/x-x<0
=>Loại
x-4/x<0
=>4/x-x>0
=>Mâu thuẫn
=>Loại
Do đó, chỉ có 1 trường hợp là x-4/x=0
=>x=2
GPT: \(\dfrac{4\sin^2\dfrac{x}{2}-\sqrt{3}\cos2x-1-2\cos^2\left(x-\dfrac{3\pi}{4}\right)}{\sqrt{2\cos3x+1}}=0\)
Lời giải:ĐK: $\cos 3x>\frac{-1}{2}$
PT $\Rightarrow 4\sin ^2\frac{x}{2}-\sqrt{3}\cos 2x-1-2\cos ^2(x-\frac{3\pi}{4})=0$
$\Leftrightarrow 2(1-\cos x)-\sqrt{3}\cos 2x-2+[1-2\cos ^2(x-\frac{3\pi}{4})]=0$
$\Leftrightarrow -2\cos x-\sqrt{3}\cos 2x-cos (2x-\frac{3\pi}{2})=0$
$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\cos (2x-\frac{3\pi}{2})=0$
$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\sin 2x=0$
$\Leftrightarrow \cos x+\frac{\sqrt{3}}{2}\cos 2x+\frac{1}{2}\sin 2x=0$
$\Leftrightarrow \cos x-\cos (2x+\frac{5\pi}{6})=0
$\Leftrightarrow \cos x=\cos (2x+\frac{5\pi}{6})$
$\Rightarrow x+2k\pi =2x+\frac{5}{6}\pi$ hoặc $-x+2k\pi =2x+\frac{5}{6}\pi$
Vậy......
giúp cần gấp tối nay, xong trước 7h tối
1)Gpt: 2x3 + x + 3 =0
2)Gpt: x3 + x2 - x\(\sqrt{2}\) - 2\(\sqrt{2}=0\)
3)Gpt: 23 -9x + 2 = 0
4)Gpt: x3 - 42 + 7x - 6 = 0
5)Gpt: 2x3 + 7x2 + 7x + 2 = 0
Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
GPT: \(\sin\left(2x+\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\)
\(\sin\left(2x+\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\pi}{4}\right)=-\dfrac{\pi}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{4}=-\dfrac{\pi}{6}+k2\pi\\2x+\dfrac{\pi}{4}=\pi-\left(-\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{6}-\dfrac{\pi}{4}+k2\pi\\2x=\pi+\dfrac{\pi}{6}-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{5\pi}{12}+k2\pi\\2x=\dfrac{11\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5\pi}{24}+k\pi\\x=\dfrac{11\pi}{24}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
GPT:\(\sqrt{\dfrac{x+1}{2x}}+\sqrt{\dfrac{2x}{x+3}}=2\)
GPT: \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
\(ĐKXĐ:x\ne0,x-\dfrac{1}{x}\ge0\)
Chia cả hai vế của phương trình đầu cho \(x\ne0\) ta có :
\(x+2\sqrt{x-\dfrac{1}{x}}=3+\dfrac{1}{x}\)
\(\Leftrightarrow x-\dfrac{1}{x}+2\sqrt{x-\dfrac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=a\left(a\ge0\right)\)
Khi đó pt có dạng : \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)
\(\Leftrightarrow a=1\) ( do \(a\ge0\) )
\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\Rightarrow x-\dfrac{1}{x}=1\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{5}}{2}\) ( thỏa mãn ĐKXĐ )
GPT: \(\dfrac{x}{2}\)(4x - 3) + 2(3 - x)(x + 4) ≤ 0
\(\dfrac{x}{2}\left(4x-3\right)+2\left(3-x\right)\left(x+4\right)\le0\)
\(\Leftrightarrow\dfrac{4x^2}{2}-\dfrac{3x}{2}+2\left(3x+12-x^2-4x\right)\le0\)
\(\Leftrightarrow\dfrac{4x^2-3x}{2}+6x+24-2x^2-8x\le0\)
\(\Leftrightarrow\dfrac{4x^2-3x+2\left(6x+24-2x^2-8x\right)}{2}\le0\)
\(\Leftrightarrow4x^2-3x+12x+48-4x^2-16x\le0\)
\(\Leftrightarrow-7x\le-48\)
\(\Leftrightarrow x\ge\dfrac{48}{7}\)
=>-7x+48≤0
<=>-7x≤-48
<=>(-7x)(-1)≥(-48)(-1)
<=>\(\dfrac{7x}{7}\)≥\(\dfrac{48}{7}\)
<=>x≥\(\dfrac{48}{7}\)
gpt: \(\dfrac{x^2-4x+1}{x+1}+\dfrac{x^2-5x+1}{2x+1}=-2\)