Cho \(\Delta ABC\) vuông tại A ,đường cao AH và \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
a) Tính B và C
b) Tính tỉ số \(\dfrac{HB}{HC}\)
c) Vẽ AD là phân giác \(\Delta AHC\) .Cm \(\Delta ABD\) cân
d) Cm BC2 =BE2 +CF2 +3AH2
Cho\(\Delta\) ABC vuông ở A; AB= 6cm, AC= 8cm. Vẽ đường cao AH
a, Tính BC
b, Chứng minh: \(\Delta\) ABC đồng dạng với \(\Delta\) HBA
c, Chứng minh: AB\(^2\) = BD. BC. Tính HB, HC
d, Vẽ phân giác AD của\(\widehat{BAC}\) (D\(\in\) BC). Tính DB, AD
hình bạn tự vé nhé.
tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow BC=10\left(DO-BC>0\right)\)
b) xét \(\Delta ABC\) VÀ \(\Delta HBA\) CÓ:
\(\widehat{BAC}=\widehat{AHB}\)
\(\widehat{B}\) CHUNG
\(\Rightarrow\Delta ABC\) đồng dạng vs \(\Delta HBA\)
c)sửa đề:\(AB^2=BH.BC\)
TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)
\(\Rightarrow AH^2=BH.BC\)
bạn kia làm 2 câu đầu mình làm 2 câu cuối nhé :
c, \(\Delta AHB~\Delta CAB\)
\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BC.BH\)
\(\Rightarrow BH=\frac{AB^2}{BC}=3,6cm\)
\(\Rightarrow HC=6,4cm\)
d, AD phân giác \(\Delta ACB\)
\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}\)( 1 )
\(\Rightarrow DC+DB=BC=10cm\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow DB=\frac{30}{7}cm\)
AD bạn tính nốt nhé
Cho \(\Delta ABC\) vuông tại A, đường cao AH, Gọi D, E theo thứ tự là hình chiếu trên AB và AC
a) CM: \(\Delta ABC\sim\Delta HBA\)
b) Cho \(HB=4cm;HC=9cm\) Tính \(AB,DE\)
c) CM: \(AD.AB=AE.AC\)
`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`
Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`
`=>\hat{C}=\hat{A_1}`
Xét `\triangle ABC` và `\triangle HBA` có:
`{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)
`b)` Ta có: `BC=HB+HC=4+9=13(cm)`
Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao
`@AH=\sqrt{BH.HC}=6 (cm)`
`@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`
Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`
`=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`
`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`
Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`
`=>AD.AB=AE.AC`
Cho \(\Delta ABC\)vuông tại A, đường cao AH, đường phân giác AD. Biết rằng: AH = \(3\sqrt{168}cm\); HC - HB = \(179cm\).
a) Tính BD, và AD
b) Tính góc HAD
c) Tính tỉ số diện tích \(\Delta ABD\)và \(\Delta ADC\)
Cho \(\Delta ABC\) vuông tại A biết AC=4 cm, AB= 3 cm và AH là đường cao của tam giác. Tính độ dài BC, AH, HB, HC (làm tròn kết quả đến số thập phân thứ 2)
cho ΔABC vuông tại A có B=60 độ BC=6 cm
a, tính AB,AC
b,Kẻ đường cao AH củaΔABC Tính HB,HC
c,trên tia đối của tia BA lấy điểm D sao choDB=BC .CM\(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
d, từ A kẻ đường thẳng // vs phân giác của CBD cắt CD tại K. CM \(\dfrac{1}{KD.KC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
CHỈ CẦN GIÚP MK CÂU d THÔI
a: Xét ΔABC vuông tại A có cos B=AB/BC
=>AB/BC=1/2
=>AB=3cm
=>AC=3 căn 3(cm)
b: \(HB=\dfrac{AB^2}{BC}=1.5\left(cm\right)\)
HC=6-1,5=4,5(cm)
Cho \(\Delta\)ABC vuông tại A : đường cao AH , HQ \(\perp\)AB , HK là phân giác góc AHC . Biết AB = 6 cm , AC = 8 cm tính AH , HC , HB , AQ , CQ
Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}\Rightarrow AH=4,8\left(cm\right)\).
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(=6^2+8^2=100\)
\(\Rightarrow BC=10\left(cm\right)\)
\(HC=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\left(cm\right)\)
\(HB=BC-HC=10-6,4=3,6\left(cm\right)\)
Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HQ\):
\(AQ=\frac{AH^2}{AB}=\frac{4,8^2}{6}=3,84\left(cm\right)\)
Xét tam giác \(ACQ\)vuông tại \(A\):
\(CQ^2=AC^2+AQ^2=8^2+3,84^2\Rightarrow CQ=\frac{8\sqrt{769}}{25}\left(cm\right)\)
Cho \(\Delta\)ABC vuông tại A, AB = 12cm , AC = 16cm, đường cao AH. Qua B kẻ đường thẳng d vuông góc AB, tia phân giác góc BAC cắt BC tại M, cắt đường thẳng d tại N. Vẽ hình. Chứng minh ΔBMN ~ ΔAMC và \(\dfrac{AB}{AC}\) = \(\dfrac{MN}{AM}\)
Xét ΔBMN và ΔCMA có
góc BMN=góc AMC
góc MNB=góc MAC
=>ΔBMN đồng dạng với ΔCMA
\(cho\Delta abc\) vuông tại A đường cao AH vẽ HK\(\perp\)AB(K\(\in\)AB) câu a cm: AB.AK=HB.HC câu b cm: \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\) câu c vẽ HE\(\perp\)AC. CM: \(\dfrac{BH}{CE}=\dfrac{AB^3}{AC^3}\) câu d giả sử AB<AC. Lấy M\(\in\)HC; HM=HA. Qua M vẽ 1 đường thẳng \(\perp\) BC cắt AC tại F. CM: \(\dfrac{1}{AH^2}=\dfrac{1}{AF^2}+\dfrac{1}{AC^2}\)
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)