CMR 0<a<1 Thì\(\sqrt{a}\)>a
bạn nào giải hộ minh cái
cho x,y thuộc Z,x+y=0 CMR x nhân y < hoặc = 0
áp dụng
a,cho a,b thuộc Z, a+2b=0
+,CMR (a+b)xb< hoặc = 0
+,CMR axb<0
+,CMR (a+b) nhân a > hoặc =0
mình dang cần gấp
4'30 đi học rùi
1. cho a+b=0 cmr:
(x+a).(x+b)=x2+ab
2.cho m-n=0 cmr:
(x-m).(x+n)=x2-mn
Bài 1:
Ta có: (x+a)(x+b)
\(=x^2+bx+ax+ab\)
\(=x^2+ab+x\left(a+b\right)\)
\(=x^2+ab\)
Bài 2:
Ta có: \(\left(x-m\right)\left(x+n\right)\)
\(=x^2+nx-mx-nm\)
\(=x^2-nm+x\left(n-m\right)\)
\(=x^2-mn\)
1. Ta có với \(a+b=0\) thì
\(VP=\left(x+a\right)\left(x+b\right)\) \(=x^2+ax+bx+ab\)\(=x\left(a+b\right)+x^2+ab\)\(=x^2+ab\)
Mặt khác, \(VT=x^2+ab\)
\(\Rightarrow VP=VT\) ( đpcm )
2. Tương tự bài 1
Ta có với \(m-n=0\) thì
\(VP=\left(x-m\right)\left(x+n\right)=x^2-mx+nx-mn=-x\left(m-n\right)+x^2-mn=x^2-mn\)
Mặt khác, \(VT=x^2-mn\)
\(\Rightarrow VP=VT\) ( đpcm )
Câu 4: CMR: \(\sin x < x\) với \(x > 0\).
Câu 5: CMR: \(\cos x > 1 - \dfrac {x^2}{2}\) với \(x \neq 0\).
với x,y,z>0 cmr với x,y,z>0 cmr ( x^2 + 5 )( y^2 + 5 )( z^2 + 5 ) >= 6( x + y + z + 3)^2
Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1
Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)
\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)
\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)
\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)
\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)
\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)
\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)
\(\ge6\left(x+y+z+3\right)^2\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bài 1 : Tìm x :
1) 36^2-49=0
2) x^3-16x=0
3) (x-1)*(x+2)-x-2=0
4) 3x^3-27x=0
5) x^2*(x+1)+2x*(x+1)=0
6) x*(2x-3)-2*(3-2x)=0
Bài 2 : Toán chia hết :
a) CMR 8^5+2^11chia hết cho 17
b) CMR 69^2-69.5chia hết cho 32
c) CMR 328^3+172^3 chia hết cho 2000
d) CMR 19^19+69^19 chia hết cho 44
e) CMR hiệu các bình phương của hai số lẻ liên tiếp chia hết cho 8
CMR: 0 :0=0
ai giải đc là thần
mk lấy ví dụ :
cậu có không cái kẹo cậu chia cho 0 bạn vậy bạn còn lại 0 cái
đó chính là lý do 0 : 0 = 0
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
Giúp mình với
cho a>0,b>0. CMR \(\dfrac{1}{a}+\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\)
CMR ab ≤ \(\dfrac{a^2+b^2}{2}\) . Dấu = xảy ra khi nào
a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )
\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )
\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
a: Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a+b+c=0\)
a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)
b) Ta có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)
\(ĐTXR\Leftrightarrow a=b=c\), mà a,b,c đôi một khác nhau => Đẳng thức không xảy ra\(\Rightarrow a^2+b^2+c^2>ab+ac+bc\Rightarrow a^2+b^2+c^2-ab-ac-bc>0\)
Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow a+b+c=0\)( do (1))
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
a: Ta có: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow a+b+c=0\)