Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiếu Lê Minh
Xem chi tiết
Nguyễn Trần Lam Trúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2021 lúc 20:24

Bài 1: 

Ta có: (x+a)(x+b)

\(=x^2+bx+ax+ab\)

\(=x^2+ab+x\left(a+b\right)\)

\(=x^2+ab\)

Bài 2:

Ta có: \(\left(x-m\right)\left(x+n\right)\)

\(=x^2+nx-mx-nm\)

\(=x^2-nm+x\left(n-m\right)\)

\(=x^2-mn\)

Nhan Thanh
8 tháng 8 2021 lúc 20:28

1. Ta có với \(a+b=0\) thì

\(VP=\left(x+a\right)\left(x+b\right)\) \(=x^2+ax+bx+ab\)\(=x\left(a+b\right)+x^2+ab\)\(=x^2+ab\)

Mặt khác, \(VT=x^2+ab\)

\(\Rightarrow VP=VT\) ( đpcm )

2. Tương tự bài 1

Ta có với \(m-n=0\) thì

\(VP=\left(x-m\right)\left(x+n\right)=x^2-mx+nx-mn=-x\left(m-n\right)+x^2-mn=x^2-mn\)

Mặt khác, \(VT=x^2-mn\)

\(\Rightarrow VP=VT\) ( đpcm )

Phạm Trần Phát
Xem chi tiết
Vũ Trần Giang
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2023 lúc 21:54

Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)

\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)

\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)

\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)

\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)

\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)

\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)

\(\ge6\left(x+y+z+3\right)^2\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Nguyễn Thùy Linh
Xem chi tiết
Candy Soda
27 tháng 9 2016 lúc 17:45

Câu 1 bài 1 là gì vậy mình không hiểungaingung

Lương Song Hoành
Xem chi tiết
Shin cậu bé bút chì
24 tháng 7 2018 lúc 9:00

= 0 nhé !

1 gia đình
24 tháng 7 2018 lúc 9:04

mk lấy ví dụ :

cậu có không cái kẹo cậu chia cho 0 bạn vậy bạn còn lại 0 cái 

đó chính là lý do 0 : 0 = 0

Dịu Kun
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 16:46

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

Yeutoanhoc
28 tháng 6 2021 lúc 16:53

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

Nguyễn Dương Thành Đạt
Xem chi tiết
Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 20:48

a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

 

Hoàng Sơn ({ cam báo cáo...
27 tháng 6 2021 lúc 20:51

ab≤a2+b2/2

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:03

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 21:14

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 21:21

b) Ta có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(ĐTXR\Leftrightarrow a=b=c\), mà a,b,c đôi một khác nhau => Đẳng thức không xảy ra\(\Rightarrow a^2+b^2+c^2>ab+ac+bc\Rightarrow a^2+b^2+c^2-ab-ac-bc>0\)

Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow a+b+c=0\)( do (1))

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:29

a: Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a+b+c=0\)