Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minhduc
Xem chi tiết
minhduc
5 tháng 11 2017 lúc 11:39

1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5 
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3) 
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5 
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8 
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5 
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27 
<=> - 3x^2 - 18x - 22 = 0 
<=> 3x^2 + 18x + 22 = 0 

nguyenvankhoi196a
5 tháng 11 2017 lúc 11:48

Nửa chu vi mảnh đất là: 

                                               120 : 2 = 60 (m)

Chiều dài hơn chiều rộng là:

                                               5 + 5 = 10 (m)

Chiều rộng là:

                                          ( 60 - 10 ) : 2 = 25 (m)

Chiều dài là:

                                                25 + 10 = 35 (m)

Diện tích là:

                                               25  35 = 875 ( )

Lê Ngọc Bảo Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 9:57

bài 5:

1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)

2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)

\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)

3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)

\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)

\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)

4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)

\(=\dfrac{1}{6\left(x^2+x+1\right)}\)

5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)

\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)

\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)

\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)

Bài 3:

1: \(9x^3-xy^2\)

\(=x\cdot9x^2-x\cdot y^2\)

\(=x\left(9x^2-y^2\right)\)

\(=x\left(3x-y\right)\left(3x+y\right)\)

2: \(x^2-3xy-6x+18y\)

\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)

\(=x\left(x-3y\right)-6\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-6\right)\)

3: \(x^2-3xy-6x+18y\)

\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)

\(=x\left(x-3y\right)-6\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-6\right)\)

4: \(6xy-x^2+36-9y^2\)

\(=36-\left(x^2-6xy+9y^2\right)\)

\(=36-\left(x-3y\right)^2\)

\(=\left(6-x+3y\right)\left(6+x-3y\right)\)

5: \(x^4-6x^2+5\)

\(=x^4-x^2-5x^2+5\)

\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)

\(=\left(x^2-5\right)\left(x^2-1\right)\)

\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)

6: \(9x^2-6x-y^2+2y\)

\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)

\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)

\(=\left(3x-y\right)\left(3x+y-2\right)\)

Dao Linh Chi
Xem chi tiết
★Čүċℓøρş★
10 tháng 12 2019 lúc 20:57

a ) ( 6x + 1 )2 + ( 6x - 1 )2  - 2 . ( 6x + 1 )( 6x - 1 )

= ( 6x + 1 )2 - 2 . ( 6x + 1 )( 6x - 1 ) + ( 6x - 1 )2

= ( 6x + 1 - 6x + 1 )2

= 22 = 4

b ) x . ( 2x2 - 3 ) - x2 . ( 5x + 1 ) + x2

= 2x3 - 3x - 5x3 - x2 + x2

= ( 2x3 - 5x3 ) - 3x - ( x2 - x2 )

= - 3x3 - 3x

= - 3x . ( x2 + 1)

Khách vãng lai đã xóa
an
Xem chi tiết
Thương Phan Thị Quỳnh
Xem chi tiết
HT.Phong (9A5)
31 tháng 7 2023 lúc 8:31

1) \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x\right)^2-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

2) \(x^3-6x^2+12x-8=27\)

\(\Leftrightarrow x^3-3\cdot x^2\cdot2+3\cdot2^2\cdot x-2^3=27\)

\(\Leftrightarrow\left(x-2\right)^3=27\)

\(\Leftrightarrow\left(x-2\right)^3=3^3\)

\(\Leftrightarrow x-2=3\)

\(\Leftrightarrow x=3+2\)

\(\Leftrightarrow x=5\)

3) \(x^2-8x+16=5\left(4-x\right)^3\)

\(\Leftrightarrow\left(x-4\right)^2=5\left(4-x\right)^3\)

\(\Leftrightarrow\left(4-x\right)^2=5\left(4-x\right)^3\)

\(\Leftrightarrow5\left(4-x\right)=1\)

\(\Leftrightarrow4-x=\dfrac{1}{5}\)

\(\Leftrightarrow x=4-\dfrac{1}{5}\)

\(\Leftrightarrow x=\dfrac{19}{5}\)

4) \(\left(2-x\right)^3=6x\left(x-2\right)\)

\(\Leftrightarrow8-12x+6x^2-x^3=6x^2-12x\)

\(\Leftrightarrow-12x+6x^2-6x^2+12x=8-x^3\)

\(\Leftrightarrow8-x^3=0\)

\(\Leftrightarrow x^3=8\)

\(\Leftrightarrow x^3=2^3\)

\(\Leftrightarrow x=2\)

5) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)

\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x-3x\right)+\left(3x^2+3x^2\right)+\left(1+1\right)-6x^2+12x-6=-10\)

\(\Leftrightarrow0+0+0+\left(6x^2-6x^2\right)+12x-4=-10\)

\(\Leftrightarrow12x-4=-10\)

\(\Leftrightarrow12x=-10+4\)

\(\Leftrightarrow12x=-6\)

\(\Leftrightarrow x=\dfrac{-6}{12}\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

6) \(\left(3-x\right)^3-\left(x+3\right)^3=36x^2-54x\)

\(\Leftrightarrow27-27x+9x^2-x^3-x^3-9x^2-27x-27=36x^2-54x\)

\(\Leftrightarrow-54x-2x^3=36x^2-54x\)

\(\Leftrightarrow-2x^3=36x^2\)

\(\Leftrightarrow-2x^3-36x^2=0\)

\(\Leftrightarrow-2x^2\left(x+18\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x^2=0\\x+18=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-18\end{matrix}\right.\)

Simon
Xem chi tiết
Cù Đức Anh
8 tháng 12 2021 lúc 23:20

a, <=> x2 -2x +1 + 5x -x2 =8

<=> 3x +1 =8 

<=> 3x = 7

<=> x= 7/3

b, thiếu đề

c, <=> 2x3 -1 + 2x(4 -x2) = 7

<=> 2x3 + 8x -23 = 8

<=> 8x =8

<=> x=1

Mark Tuan
Xem chi tiết
lê anh thư
1 tháng 8 2017 lúc 15:32

=    (x2+1)- [(x2)+ 13]=0

 (x6+ 3.x+3.x+1) - (x6+1) =0

 x6+3.x4+3.x2+1-x6-1=0

3.x4+3.x2=0

3.x2(x2+1)=0

\(\orbr{\begin{cases}3.x^2=0\\x^2+1=0\end{cases}}\orbr{ }\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(loai\right)\end{cases}}\)

vay x=0

Winter
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 9:43

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 9:44

\(C=2x^2+4x+2+3x^2+12x+12-4x^2-24x-36\\ C=x^2-8x-22=\left(x^2-8x+16\right)-38=\left(x-4\right)^2-38\ge-38\\ C_{min}=-38\Leftrightarrow x=4\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 11:25

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

Lâm Tiểu Hàn
Xem chi tiết
hoangtuvi
Xem chi tiết
Emmaly
6 tháng 9 2021 lúc 11:49

a) (x-2)^x-3(x+1)(x-1)+6x^2=5

<=> \(x^2-4x+4-3(x^2-1)+6x^2-5=0\)

<=>\(x^2-4x+4-3x^2+3+6x^2-5=0\)

<=>\(4x^2-4x+2=0\)

<=> \(4x^2-4x+1+1=0\)

<=>\((2x-1)^2+1=0\)

\(ta\) có \((2x-1)^2 > hoặc = 0\)

             1>0

=> \((2x-1)^2+1=0 (vô lí)\)

=> phuơng trình vô nghiêm S={ rỗng }