Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Winter

Tìm GTNN của các đa thức sau:

A=5x2-|6x-1|-1

B=9x2-6x-4|3x-1|+6

C=2(x+1)2+3(x+2)2-4(x+3)2

 

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 9:43

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 9:44

\(C=2x^2+4x+2+3x^2+12x+12-4x^2-24x-36\\ C=x^2-8x-22=\left(x^2-8x+16\right)-38=\left(x-4\right)^2-38\ge-38\\ C_{min}=-38\Leftrightarrow x=4\)

Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 11:25

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)


Các câu hỏi tương tự
Nguyễn Ngọc Thảo Nguyên
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết
do huynh ngoc tram
Xem chi tiết
Dục Nguyễn
Xem chi tiết
Phạm Như Hiếu
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết
Ngoc Diep
Xem chi tiết
Trần Bỏa Trân
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết