Giải pt: 3cosx - 2= -3(1-cosx)cot^2x
Giải pt sau :
1/ (2sinx-1)(2cos2x+2sinx+1)=3-4cos2 x
2/ \(\sqrt{3}cot\left(\frac{\pi}{4}-x\right)+1=0\)
3/ (cos\(\frac{x}{4}-3sinx\)) sinx + (\(\left(1+sin\frac{x}{4}-3cosx\right)cosx=0\)
4/ \(sin2x-cos2x+3sinx-cosx-1=0\)
1.
\(\left(2sinx-1\right)\left(2cos2x+2sinx+1\right)=3-4\left(1-sin^2x\right)\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cos2x+2sinx+1\right)=4sin^2x-1\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cos2x+2sinx+1\right)-\left(2sinx-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cos2x+2sinx+1-2sinx-1\right)=0\)
\(\Leftrightarrow2cos2x\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
2.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(\frac{\pi}{4}-x\right)=-\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow\frac{\pi}{4}-x=-\frac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\frac{7\pi}{12}+k\pi\)
3.
\(\Leftrightarrow cos\frac{x}{4}sinx+sin\frac{x}{4}.cosx-3\left(sin^2x+cos^2x\right)+cosx=0\)
\(\Leftrightarrow sin\left(x+\frac{x}{4}\right)=-cosx\)
\(\Leftrightarrow sin\frac{5x}{4}=sin\left(x-\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{5x}{4}=x-\frac{\pi}{2}+k2\pi\\\frac{5x}{4}=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
\(\Leftrightarrow2sinx.cosx-\left(1-2sin^2x\right)+3sinx-cosx-1=0\)
\(\Leftrightarrow cosx\left(2sinx-1\right)+2sin^2x+3sinx-2=0\)
\(\Leftrightarrow cosx\left(2sinx-1\right)+\left(2sinx-1\right)\left(sinx+2\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\sinx+cosx=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải các pt sau:
a) tan^2x - cot^2(x-π/4) =0
b) 3cot^2(45°-3/2x) -1=0
4) 4cos^2x - 2(1+căn 2)cosx + căn 2=0
a/ \(\tan^2x-\cot^2\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow\frac{1}{\cos^2x}-1-\frac{1}{\sin^2\left(x-\frac{\pi}{4}\right)}+1=0\)
\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\sin x.\cos\frac{\pi}{4}-\cos x.\sin\frac{\pi}{4}\right)^2}=0\)
\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\frac{\sqrt{2}}{2}\sin x-\frac{\sqrt{2}}{2}\cos x\right)^2}=0\)
\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x}=0\)
\(\Leftrightarrow\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x-\cos^2x=0\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}\cos^2x-\sin x.\cos x-\frac{1}{2}\cos^2x=0\)
\(\Leftrightarrow\cos^2x+\sin x.\cos x-\frac{1}{2}=0\)
Đến đây là dễ r nha bn :3
Giải các pt sau :
\(tan^2x+cot^2x=1+cos^2\left(3x+\frac{\pi}{4}\right)\)
\(cos\left(\frac{2\pi}{3}sinx-\frac{2\pi}{3}\right)=1\)
cot\(\left[\frac{\pi}{4}\left(cosx-1\right)\right]=-1\)
a. ĐKXĐ: ...
Ta có: \(\left\{{}\begin{matrix}VT=\left(tanx-cotx\right)^2+2\ge2\\VP=1+cos^2\left(3x+\frac{\pi}{4}\right)\le2\end{matrix}\right.\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}tanx-cotx=0\\cos^2\left(3x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cos2x=0\\sin\left(3x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
b.
\(\Leftrightarrow\frac{2\pi}{3}\left(sinx-1\right)=k2\pi\)
\(\Leftrightarrow sinx-1=3k\)
\(\Leftrightarrow sinx=3k+1\)
Do \(-1\le sinx\le1\)
\(\Rightarrow-1\le3k+1\le1\Rightarrow-\frac{2}{3}\le k\le0\)
\(\Rightarrow k=0\)
\(\Rightarrow sinx=1\)
\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)
c.
ĐKXĐ: ...
\(\Leftrightarrow\frac{\pi}{4}\left(cosx-1\right)=-\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow cosx-1=4k-1\)
\(\Leftrightarrow cosx=4k\)
Mà \(-1\le cosx\le1\Rightarrow-1\le4k\le1\)
\(\Rightarrow-\frac{1}{4}\le k\le\frac{1}{4}\Rightarrow k=0\)
\(\Rightarrow cosx=0\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
Giải các phương trình sau:
a) Sinx + \(\sqrt{3}\) Cosx + 2Sin(\(\dfrac{\Pi}{6}\)-x) = \(\sqrt{2}\)
b) 3Cosx - 4Sinx + \(\dfrac{2}{3Cosx-4Sinx-6}\)= 3
c) 8Sinx = \(\dfrac{\sqrt{3}}{Cosx}+\dfrac{1}{Sinx}\)
d) 3Sin3x - \(\sqrt{3}\) Cos9x = 1 + 4Sin33x
e) 5Sin2x - 6Cos2x = 13
f) Cos7x - \(\sqrt{3}\) Sin7x - Sinx = \(\sqrt{3}\) Cos x
giải pt \(\sqrt{3}sinx+cosx=3+\dfrac{1}{\sqrt{3}sinx}+cosx+1\)
\(2\sqrt{3}cotx-\dfrac{1}{sinx}=1+\dfrac{\sqrt{3}cotx}{sinx}-cot\)2x
1. Tính tổng các nghiệm trên đoạn [0,4pi] của phương trình 3cosx-1=0
2. Giải phương trình
a/ \(\frac{1}{cos^2x}-2tanx-4=0\)
b/\(1+sinxcosx\left(x+\frac{pi}{2}\right)=sin\left(x-\frac{pi}{2}\right)\)
c/ \(\frac{1}{sin^2x}+3tan^2x=5\)
d/ \(\frac{2}{1+cot^2x}=1-cosx\)
1/ \(cosx=\frac{1}{3}\Rightarrow x=\pm a+k2\pi\) với \(cosa=\frac{1}{3}\)
Tổng các nghiệm:
\(\sum x=a+a+2\pi+\left(-a+2\pi\right)+\left(-a+4\pi\right)=8\pi\)
2/ ĐKXĐ:...
\(\Leftrightarrow1+tan^2x-2tanx-4=0\)
\(\Leftrightarrow tan^2x-2tanx-3=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arctan3+k\pi\end{matrix}\right.\)
b/ Không hiểu đề đoạn này \(sinx.cosx\left(x+\frac{\pi}{2}\right)\) , góc trong ngoặc không biết là của cái gì?
c/ ĐKXĐ:...
\(1+cot^2x+3tan^2x=5\)
\(\Leftrightarrow\frac{1}{tan^2x}+3tan^2x-4=0\)
\(\Leftrightarrow3tan^4x-4tan^2x+1=0\)
\(\Rightarrow\left[{}\begin{matrix}tan^2x=1\\tan^2x=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}tanx=\pm1\\tanx=\pm\frac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{4}+k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)
d/
ĐKXĐ: \(sinx\ne0\Rightarrow cosx\ne\pm1\)
\(2.cos^2x=1-cosx\)
\(\Leftrightarrow2cos^2x+cosx-1=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow cosx=cos\frac{\pi}{3}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
Giải các pt
a) \(\frac{2cosx-1}{2cosx+1}=3\)
b) \(cosx\left(2cos2x-1\right)=3cosx\)
c) \(sin2x.cos2x=0\)
a/ ĐKXĐ: \(cosx\ne-\frac{1}{2}\)
\(\Leftrightarrow2cosx-1=6cosx+3\)
\(\Leftrightarrow4cosx=-4\Rightarrow cosx=-1\)
\(\Rightarrow x=\pi+k2\pi\)
b/
\(\Leftrightarrow cosx\left(2cos2x-1\right)-3cosx=0\)
\(\Leftrightarrow cosx\left(2cos2x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
c/
\(\Leftrightarrow2sin2x.cos2x=0\)
\(\Leftrightarrow sin4x=0\)
\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)
giải các pt
a) \(cos2x+cosx+1=0\)
b) \(tanx+cotx=2\)
c) \(tan^2x+\left(\sqrt{3}-1\right)tanx-\sqrt{3}=0\)
d) \(cot^22x+\frac{3}{tan2x}+2=0\)
a/
\(\Leftrightarrow2cos^2x-1+cosx+1=0\)
\(\Leftrightarrow cosx\left(2cosx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\Leftrightarrow tanx+\frac{1}{tanx}=2\)
\(\Leftrightarrow tan^2x+1=2tanx\)
\(\Leftrightarrow tan^2x-2tanx+1=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)
c/
\(a+b+c=1+\sqrt{3}-1-\sqrt{3}=0\)
\(\Rightarrow\) Pt có 2 nghiệm: \(\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow cot^22x+3.cot2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k\pi\\2x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{1}{2}arccot\left(-2\right)+\frac{k\pi}{2}\end{matrix}\right.\)
giải pt sau :
\(\left(cos\frac{x}{4}-3sinx\right).sinx+\left(1+sin\frac{x}{4}-3cosx\right).cosx=0\)