Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
....
Xem chi tiết
An Thy
11 tháng 6 2021 lúc 18:18

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)

 

missing you =
11 tháng 6 2021 lúc 18:14

cả 2 ý bạn trục căn thức ở mấu là xong nhé:

vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Lê Kiều Trinh
Xem chi tiết
Lê Kiều Trinh
2 tháng 10 2021 lúc 19:21

giúp mình với ạ 

 

Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 23:09

b: Ta có: \(\dfrac{4}{\sqrt{3}+1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{6}{3-\sqrt{3}}\)

\(=2\sqrt{3}-2+\sqrt{3}+1-3-\sqrt{3}\)

\(=2\sqrt{3}-4\)

Vangull
Xem chi tiết
Lê Ng Hải Anh
16 tháng 5 2021 lúc 14:44

Ta có: \(\dfrac{4}{\sqrt{b}-1}+\dfrac{3}{\sqrt{b}+1}-\dfrac{6\sqrt{b}+2}{b-1}\) (ĐKXĐ: b ≥ 0, b ≠ 1)

\(=\dfrac{4\left(\sqrt{b}+1\right)+3\left(\sqrt{b}-1\right)-\left(6\sqrt{b}+2\right)}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}\)

\(=\dfrac{\sqrt{b}-1}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}\)

\(=\dfrac{1}{\sqrt{b}+1}\)

 

phamthiminhanh
Xem chi tiết
PTTD
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 14:44

b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)

\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)

\(=\dfrac{3-\sqrt{3}}{3}\)

Lương Tấn	Sang
Xem chi tiết
Nhi Quỳnh
Xem chi tiết
HT.Phong (9A5)
2 tháng 11 2023 lúc 16:57

 b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\cdot\sqrt{12-3\sqrt{7}}-\sqrt{2}\cdot\sqrt{12+3\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{21}\right)^2-2\cdot\sqrt{21}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{21}\right)^2+2\cdot\sqrt{21}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{21}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{21}+\sqrt{3}\right)^2}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}\)

\(=\dfrac{-2\sqrt{3}}{\sqrt{2}}\)

\(=-\sqrt{6}\)  

c) \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}\)

\(=\sqrt[3]{\dfrac{3\cdot9}{4\cdot16}}\)

\(=\sqrt[3]{\left(\dfrac{3}{4}\right)^3}\)

\(=\dfrac{3}{4}\)

d) \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}\)

\(=\sqrt[3]{\dfrac{54}{-2}}\)

\(=\sqrt[3]{-27}\)

\(=\sqrt[3]{\left(-3\right)^3}\)

\(=-3\) 

Nguyễn Lê Phước Thịnh
7 tháng 11 2023 lúc 18:06

a: Sửa đề: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}\cdot\sqrt{6}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{\sqrt{6}+1}{3\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{2\sqrt{2}\left(\sqrt{6}+1\right)+\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{4\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{5\sqrt{3}+\sqrt{2}}{12}\)

e: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(=\sqrt[3]{2\sqrt{2}+3\sqrt{2}+6+1}-\sqrt[3]{2\sqrt{2}-3\sqrt{2}+6-1}\)

\(=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}\)

\(=\sqrt{2}+1-\left(\sqrt{2}-1\right)\)

\(=\sqrt{2}+1-\sqrt{2}+1=2\)

Nguyễn Thị Minh Thư
Xem chi tiết
Akai Haruma
12 tháng 7 2021 lúc 10:27

Lời giải:
\(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}=\frac{1+\sqrt{2}}{(1-\sqrt{2})(1+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}\)

\(=\frac{1+\sqrt{2}}{1-2}-\frac{\sqrt{2}+\sqrt{3}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}=-(1+\sqrt{2})+(\sqrt{2}+\sqrt{3})-(\sqrt{3}+\sqrt{4})\)

\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}=-1-\sqrt{4}=-1-2=-3\)

An Thy
12 tháng 7 2021 lúc 10:28

\(\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+1}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}-\dfrac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{4}+\sqrt{3}}{\left(\sqrt{3}-\sqrt{4}\right)\left(\sqrt{3}+\sqrt{4}\right)}\)

\(=\dfrac{\sqrt{2}+1}{-1}-\dfrac{\sqrt{2}+\sqrt{3}}{-1}+\dfrac{\sqrt{4}+\sqrt{3}}{-1}=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{4}-\sqrt{3}\)

\(=-1-\sqrt{4}=-1-2=-3\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 11:44

\(\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}\)

\(=-\sqrt{2}-1+\sqrt{3}+\sqrt{2}-2-\sqrt{3}\)

=-3

Phạm Quỳnh Anh
Xem chi tiết
YangSu
4 tháng 4 2022 lúc 12:44

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)

\(=\left(\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\left(\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{2}{\sqrt{x}+3}\)

Vậy \(B=\dfrac{2}{\sqrt{x}+3}\)