cho các tập hợp A=\(\left(-\infty;m\right)\) và B=\(\left[3m-1;3m+3\right]\) tìm m để
a) \(A\subset C_RB\) b)\(C_RA\cap B\ne\varnothing\)
Tìm phần bù của các tập hợp sau trong \(\mathbb{R}\):
a) \(\left( { - \infty ; - 2} \right)\)
b) \([ - 5; + \infty )\)
Tham khảo:
Ta có:
Suy ra phần bù của tập hợp \(\left( { - \infty ; - 2} \right)\) trong \(\mathbb{R}\) là: \(\mathbb{R}{\rm{\backslash }}\left( { - \infty ; - 2} \right) = [ - 2; + \infty )\)
Suy ra phần bù của tập hợp \([ - 5; + \infty )\) trong \(\mathbb{R}\) là: \(\mathbb{R}{\rm{\backslash }}[ - 5; + \infty ) = ( - \infty ; - 5)\)
Tìm phần bù của các tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)
Bài 3: Tìm giao các tập hợp sau:
\(a,\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)\\ b,\left(-\dfrac{11}{2};7\right)\cap\left(-2;\dfrac{27}{2}\right)\\ c,\left(0;12\right)\cap[5;+\infty)\\ d,R\cap[-1;1)\)
\(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
\(\left(-\dfrac{11}{2};7\right)\cap\left(-2;\dfrac{27}{2}\right)=\left(-2;7\right)\)
\(\left(0;12\right)\cap[5;+\infty)=[5;12)\)
\(R\cap\left[-1;1\right]=\left[-1;1\right]\)
Cho `3` tập hợp \(A=\left(-3;-1\right)\cup\left(1;2\right);B=\left(-1;+\infty\right);C=\left(-\infty;2m\right)\). Tìm m đề \(A\cap B\cap C\ne\varnothing\)
\(A=\left(-3;-1\right)\cup\left(1;2\right)\)
\(B=\left(-1;+\infty\right)\)
\(C=\left(-\infty;2m\right)\)
\(A\cap B=\left(-3;-1\right)\)
Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)
\(\Leftrightarrow m\ge-\dfrac{1}{2}\)
Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài
Cho ba tập hợp M = [ -4; 7]; N = ( -\(\infty;-2\))\(\cup\left(3;+\infty\right)\). Xác định tập hợp M \(\cap N\)
\(M\cap N=[-4;-2)\cup(3;7]\)
cho nửa khoảng A=(-\(\infty\);-m] và khoảng B=(2m-5;23). gọi S là tập hợp các số thực m để \(A\cup B=A\). hỏi S là tập con của tập hợp nào sau đây?
A. (-\(\infty\);-23)
B. (-\(\infty\);0]
C. (-23;+\(\infty\))
D. \(\varnothing\).
Để A hợp B=A thì B là tập con của A
=>2m-5<23 và 23<=-m
=>2m<28 và -m>=23
=>m<=-23 và m<14
=>m<=-23
=>Chọn B
Xác định tập hợp
A = ( -3;5] \(\cup\) [8;10] \(\cup\) [2;8)
B = [0;2] \(\cup\) (\(-\infty;5\)] \(\cup\left(1;+\infty\right)\)
C = [ -4;7] \(\cup\) (0;10)
D = ( \(-\infty;3\) ] \(\cup\left(-5;+\infty\right)\)
E = \(\left(3;+\infty\right)\ \)\ ( \(-\infty;1\)]
F = ( 1;3] \ [0;4)
A=(-3;5] hợp [8;10] hợp [2;8)
=(-3;5) hợp [2;8) hợp [8;10]
=(-3;8) hợp [8;10]
=(-3;10]
B=[0;2] hợp (-vô cực;5] hợp (1;+vô cực)
=(-vô cực;5] hợp (1;+vô cực)
=(-vô cực;+vô cực)=R
C=[-4;7] hợp (0;10)
Vì (0;7] thuộc (0;10) nên [-4;7] hợp (0;10)=[-4;10)
D=(-vô cực;3] hợp (-5;+vô cực)
=(-5;3]
E=(3;+vô cực)\(-vô cực;1]
=(3;+vô cực)(Vì ko có phần tử nào có trong (3;+vô cực) nằm trong(-vô cực;1])
F=(1;3]\[0;4)=rỗng(Bởi vì (1;3] là tập con của [0;4))
Xác định các tập hợp sau :
a. \(\left(-3;7\right)\cap\left(0;10\right)\)
b. \(\left(-\infty;5\right)\cap\left(2;+\infty\right)\)
c. R\\(\left(-\infty;3\right)\)
Cho tập hợp A\(=\left(-\infty;3\right),B=[\frac{m}{2};+\infty)\).Tìm điều kiện của tham số m để hai tập hợp A và B có phần tử chung
Tìm phần bù của accs tập hợp sau theo R:
a, \(A=[-12;10)\)
b, \(B=\left(-\infty;-2\right)\cup\left(2;+\infty\right)\)
c, \(C=[3;+\infty)\backslash\left\{5\right\}\)
d, \(D=\left\{x\in R|-4< x+2\le5\right\}\)