\(M\cap N=[-4;-2)\cup(3;7]\)
\(M\cap N=[-4;-2)\cup(3;7]\)
Cho `3` tập hợp \(A=\left(-3;-1\right)\cup\left(1;2\right);B=\left(-1;+\infty\right);C=\left(-\infty;2m\right)\). Tìm m đề \(A\cap B\cap C\ne\varnothing\)
Bài 1. (1 điểm)
a) Cho hai tập hợp $A=\left( -\infty ;3 \right)$ và $B=\left[ -2;15 \right)$. Tìm $A\cup B$; $A\cap B$.
b) Cho hai tập hợp số $A=\left( m-1;m+4 \right]$ và $B=\left( -2;3 \right]$ với $m$ thuộc $\mathbb{R}$. Xác định $m$ để $A \subset B$.
Cho \(A=\left[m-1;\dfrac{m+3}{2}\right]\); \(B=\left(-\infty;-3\right)\cup[3;+\infty)\)
Tìm m để \(A\cap B\ne\varnothing\)
cho nửa khoảng A=(-\(\infty\);-m] và khoảng B=(2m-5;23). gọi S là tập hợp các số thực m để \(A\cup B=A\). hỏi S là tập con của tập hợp nào sau đây?
A. (-\(\infty\);-23)
B. (-\(\infty\);0]
C. (-23;+\(\infty\))
D. \(\varnothing\).
Cho hai tập hợp \(A=\left(0;+\infty\right)\) và \(B=\left\{x\in R|mx^2-4x+m-3=0\right\}\). Tìm m để B có đúng 2 tập hợp con và \(B\subset A\)
[2] Cho tập hợp A = [ 1-m; 4-m ]; B = [ 7-4m; \(+\infty\) ) ( m là tham số ). Tìm tất cả giá trị của m để A \(\cap B\ne\varnothing\)
A. m >= 1 B. m <= 1 C. m > 1 D. m >= 2
Cho 2 tập hợp: A = [ -3; 7 ]; B = ( 2; 5 ).
Xác định các tập hợp sau: \(A\cap B\); \(A\cup B\); A \ B
Bài 1: Cho các tập hợp: A={1;2;3}, B={2;3;6;7}, C={3;4;5;8}
a)Tìm A\(\cap\)B, A\(\cup\)B, A\B, B\A
b)Chứng minh A\(\cap\)(B\C)=(A\(\cap\)B)\(A\(\cap\)C)
Bài 2: Cho A là một tập hợp tùy ý. Xác định các tập hợp sau:
a)A\(\cap\)A; A\(\cup\)A; A\(\cap\)\(\varnothing\); A\(\cup\)\(\varnothing\)
b)A\A; A\\(\varnothing\); \(\varnothing\)\A
[1] Cho tập hợp E = { x ∈ R | x < -3 }.
Khẳng định nào trong các khẳng định dưới đây là đúng?
A. E = ( -3; \(+\infty\) ) B. E = [ -3; \(+\infty\) ) C. E = ( -\(\infty\); -3 ) D. E = (\(-\infty\); -3 ]