a) \(\overline{abc}\)+\(\overline{ab}\)+\(a\)=751
b) \(\overline{ab}\)= 9.b
Thay các chữ cái bằng các chữ số thích hợp:
A) \(\overline{3a,b}\times\overline{0,b}=\overline{16,ab}\)
B)\(\overline{a,bc}\times4,1=\overline{15,abc}\)
C)\(\overline{ab,ab}\div\overline{ab}=\overline{ab,a}\)
D)\(\overline{aa,aa}\div\overline{ab,a}=\overline{a,a}\)
Mọi người trả lời, giải thích lời giải dùm em với ạ!!!
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)
chứng minh rằng a) \(\overline{abcabc}\) chia hết cho 7, 11, 13
b) \(\overline{ab}-\overline{ba}\) chia hết cho 9
c) \(\overline{abc}-\overline{cba}\) chia hết cho 99
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
Cho \(\dfrac{a+\overline{bc}}{\overline{abc}}=\dfrac{b+\overline{ca}}{\overline{bca}}=\dfrac{c+\overline{ab}}{\overline{cab}}\). Chứng minh rằng \(\dfrac{\overline{ab}}{c}=\dfrac{\overline{ca}}{b}=\dfrac{\overline{bc}}{a}\)
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Cho:\(\dfrac{a+\overline{bc}}{\overline{abc}}=\dfrac{b+\overline{ca}}{\overline{bca}}=\dfrac{c+\overline{ab}}{\overline{cab}}\)
CMR:\(\overline{\dfrac{bc}{a}=\dfrac{\overline{ca}}{b}=\dfrac{\overline{ab}}{c}}\)
Cho \(\frac{a+\overline{bc}}{\overline{abc}}=\frac{b+\overline{ca}}{\overline{bca}}=\frac{c+\overline{ab}}{\overline{cab}}\)
Chứng minh \(\frac{\overline{bc}}{a}=\frac{\overline{ca}}{b}\frac{\overline{ab}}{c}\)
cho \(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\). Tính \(\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}\)
Bài 1:Chứng minh rằng
a) \(\overline{ab}\) = 2.\(\overline{cd}\) → \(\overline{abcd}\) ⋮ 67
b) Cho \(\overline{abc⋮27}\) chứng minh rằng \(\overline{bca}\) ⋮ 27
Bài 2: Chứng minh rằng: Nếu \(\overline{ab}\) + \(\overline{cd}\) ⋮11 thì \(\overline{abcd}\) ⋮11
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
Các bạn giải nhanh cho mình nhé. Thanks!