\(\overline{abc}+\overline{ab}+a=751\)
\(a.100+b.10+c+a.10+b.1+a.1=751\)
\(a.100+a.10+a.1+b.10+b.1+c=751\)
\(a.\left(100+10+1\right)+b.\left(10+1\right)+c=751\)
\(a.111+b.11+c=751\)
\(\overline{aaa}+\overline{bb}+c=751\)
Dễ thấy \(\overline{aaa}\) chỉ có thể là 666 .
Và ta thấy \(\overline{aaa}+\overline{bb}< 751\) và nhỏ hơn c đơn vị.
Vậy ta có \(\overline{bb}+c=751-666=85\).
Cũng như \(\overline{aaa}\) ta thấy \(\overline{bb}\) cũng chỉ có thể là 77.
Vậy c là 85-77=8
Vì a=6;b=7;c=8 nên \(\overline{abc}=678\)
\(a,\overline{abc}+\overline{ab}+a=751\\ \Leftrightarrow a.100+b.10+c+a.10+b+a=751\\ \Leftrightarrow aaa+bb=751\)
Tới đây thử chọn ra
\(b,\overline{ab}+9b\\ \Leftrightarrow10a=8b\\ \Leftrightarrow5a=4b\)
+)Chọn b=5 thì 5a=4.5
=>a=4
=>Số cần tìm là 45
+)Chọn b khắc 5 thì ko tìm đc giá trị nào thỏa mãn