Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đạt
Xem chi tiết
Thành Nguyễn
Xem chi tiết
Phùng Khánh Linh
1 tháng 8 2018 lúc 17:59

Ta có : \(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)\(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\)

\(\sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n+1}\right)}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)\(2\left(\sqrt{n+1}-\sqrt{n}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)

Từ \(\left(1;2\right)\text{⇒ }đpcm\)

Phùng Khánh Linh
1 tháng 8 2018 lúc 18:16

Làm nốt phần áp dụng nèViolympic toán 9 Violympic toán 9

Bùi Thị Thanh Trúc
1 tháng 8 2018 lúc 17:53

fuck ***** fuck ***** fuck you

Nguyễn Thùy Linh
Xem chi tiết
Trà Nhật Đông
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Mai Thanh Hải
6 tháng 7 2017 lúc 18:13

Ta có :

\(\hept{\begin{cases}\frac{1}{2\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\\\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\end{cases}}\forall n\in N\)

Suy ra : \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)

Đặt \(M=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2499}}+\frac{1}{\sqrt{2500}}\)

\(\Leftrightarrow\frac{1}{2}M=\frac{1}{2\sqrt{2500}}+\frac{1}{2\sqrt{2499}}+...+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{2}}+\frac{1}{2}\)

Áp dụng BĐT , ta có :

\(\frac{1}{2}M< \sqrt{2500}-\sqrt{2499}+\sqrt{2499}-\sqrt{2498}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}M< \sqrt{2500}-\sqrt{1}+\frac{1}{2}=50-\frac{1}{2}< 50\)

\(\Rightarrow M< 100\)

Le Minh Hoang
Xem chi tiết
Qùynh Phạm
Xem chi tiết
alibaba nguyễn
20 tháng 6 2017 lúc 9:42

\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\frac{2}{\sqrt{n+1}+\sqrt{n}}< \frac{2}{2\sqrt{n}}=\frac{1}{\sqrt{n}}\)

\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{2\sqrt{n}}=\frac{1}{\sqrt{n}}\)

nguyễn minh
Xem chi tiết