cmr: tồn tại n thuộc N sao cho A=\(\sqrt{n-1}\)+\(\sqrt{n+1}\) thuộc Q
Cho số a\(\in\)N* Đặt r=\(\sqrt{a+1}+\sqrt{a}\)
CMR với mọi số nguyên dương n đều tồn tại số nguyên dương Mn sao cho
Rn=\((\sqrt{a+1}+\sqrt{a})^{n}=\sqrt{Mn+1}+\sqrt{a}\)
CMR : \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) với n thuộc N*
Áp dụng cho : \(A=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\) . CMR : 18 < A < 19
@Akai Haruma
Ta có : \(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\) ⇒ \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\)
\(\sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n+1}\right)}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\) ⇒ \(2\left(\sqrt{n+1}-\sqrt{n}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)
Từ \(\left(1;2\right)\text{⇒ }đpcm\)
CMR \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)với n thuộc N*
Áp dụng cho S=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
CMR 18<S<19
cho A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n^2}}\)
với n thuộc N , n>=2
cmr; A không phải là số tự nhiên
CMR:
Với n thuộc N*
\(a)1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\\ b)\frac{1}{\sqrt{n}}>2\left(\sqrt{n-1}-\sqrt{n}\right)\)
CMR\(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)với n thuộc N
Áp dụng CMR \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}< 100\)
Ta có :
\(\hept{\begin{cases}\frac{1}{2\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\\\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\end{cases}}\forall n\in N\)
Suy ra : \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)
Đặt \(M=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2499}}+\frac{1}{\sqrt{2500}}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{2\sqrt{2500}}+\frac{1}{2\sqrt{2499}}+...+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{2}}+\frac{1}{2}\)
Áp dụng BĐT , ta có :
\(\frac{1}{2}M< \sqrt{2500}-\sqrt{2499}+\sqrt{2499}-\sqrt{2498}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}M< \sqrt{2500}-\sqrt{1}+\frac{1}{2}=50-\frac{1}{2}< 50\)
\(\Rightarrow M< 100\)
cho 4 số phân biệt thuộc \(\left(0;1\right)\)
Chứng minh tồn tại x,y sao cho: 0<\(x\sqrt{1-y^2}-y\sqrt{1-x^2}\)<\(\dfrac{1}{2}\)
cmr \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
với n thuộc N*
\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\frac{2}{\sqrt{n+1}+\sqrt{n}}< \frac{2}{2\sqrt{n}}=\frac{1}{\sqrt{n}}\)
\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{2\sqrt{n}}=\frac{1}{\sqrt{n}}\)
cmr với mọi n thuộc N* \(1+\frac{1}{2\sqrt{2}}+\frac{1}{3\sqrt{3}}+...+\frac{1}{n\sqrt{n}}< 2\sqrt{2}\)