Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)
cho x,y thỏa mãn :
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=2\)
Tính :
\(Q=x\sqrt{y^2+1}+y\sqrt{x^2+1}\)
Tìm TXĐ:
a, \(y=\dfrac{1}{2}\sin\left(2x-1\right)-\cos\left(x^2-2\right)\).
b, \(y=\sin\sqrt{2x-4}\).
c, \(y=\sqrt{1-\cos^2x}\).
Tìm Min và Max của hàm số
\(y=f\left(x\right)=\dfrac{x+1}{\sqrt{x^2+1}}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)
Đừng có đạo hàm hay gì nhá
giải phương trình :
a, \(2x^2-11x+21-3\sqrt[3]{4x-4}=0\)
b, \(\left(3x-2\right)\sqrt{x+1}-x^2-x-2=0\)
c, \(x+4-2\left(\dfrac{x+2}{x-1}\right)\sqrt{\dfrac{x-1}{x+2}}=0\)
Giải hpt: \(\left\{{}\begin{matrix}y^2+5=5\sqrt{x}\\\sqrt{x+2}+\dfrac{1}{5}y^2=\sqrt{y^2+2y+3}+y\end{matrix}\right.\)
Cho \(x;y\in R\) thỏa mãn \(x^2+y^2-2x-4y+4=0\)
Tìm giá trị lớn nhất,giá trị nhỏ nhất của biểu thức
\(P=x^2-y^2+2\sqrt{3}xy-2\left(1+2\sqrt{3}\right)x+\left(4-2\sqrt{3}\right)y-3+4\sqrt{3}\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}\sqrt{y}\left(\sqrt{x}+\sqrt{x+3}\right)=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2+x=y^2+y\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\)