Tìm x:
\(\dfrac{x+2}{2010}+\dfrac{x+4}{2008}=\dfrac{2006}{x+6}+\dfrac{2004}{x+8}\)
Giải pt
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{-x+4}{2006}+\dfrac{-x-2008}{6}\)
Tìm x :
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+1\right)+\left(\dfrac{x-7}{2002}+1\right)+\left(\dfrac{x-6}{2003}+1\right)=\left(\dfrac{x-5}{2004}+1\right)+\left(\dfrac{x-4}{2005}+1\right)+\left(\dfrac{x-3}{2006}+1\right)\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2005}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right).\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\text{Mà}:\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)\ne0\)
\(\Rightarrow x-2009=0\Rightarrow x=2009\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-3=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\right)-3\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-\left(1+1+1\right)=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}\right)-\left(1+1+1\right)\)
\(\Leftrightarrow\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}-1-1-1=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}-1-1-1\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}-1\right)+\left(\dfrac{x-7}{2002}-1\right)+\left(\dfrac{x-6}{2003}-1\right)=\left(\dfrac{x-5}{2004}-1\right)+\left(\dfrac{x-4}{2005}-1\right)+\left(\dfrac{x-5}{2006}-1\right)\)
\(\)\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}=\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}\right)-\left(\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\right)=0\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2006}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right)\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2009=0\)
\(\Leftrightarrow x=2009\)
Vậy \(x=2009\)
Tìm x∈Z biết
\(\dfrac{x+4}{2008}+\dfrac{x+3}{2007}=\dfrac{x+2}{2009}+\dfrac{x+1}{2010}\)
Giải phương trình sau:
\(\dfrac{x-1}{2013}\)+\(\dfrac{x-2}{2012}\)+\(\dfrac{x-3}{2011}\)=\(\dfrac{x-4}{2010}\)+\(\dfrac{x-5}{2009}\)+\(\dfrac{x-6}{2008}\)
`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`
`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`
`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`
`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)
`<=>x=2014`
Vậy `S={2014}`.
Giải phương trình sau:
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2019}-1+\dfrac{x-5}{2010}-1+\dfrac{x-6}{2008}-1\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\Leftrightarrow x=2014\)
Giải phương trình sau:
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
\(\Leftrightarrow\left(x-2014\right).A=0\)
\(\text{Vì A }\ne0\)
\(\Rightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}+\dfrac{x+4}{2006}+\dfrac{x+2028}{6}=0\)
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
\(\Rightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\)
\(\Rightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)
Mà \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\ne0\)
\(\Rightarrow x+2010=0\)
\(\Rightarrow x=-2010\)
Vậy x = -2010
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}+\dfrac{x+4}{2006}+\dfrac{x+2028}{6}=0\)
\(\Leftrightarrow\dfrac{x+2}{2008}+1+\dfrac{x+3}{2007}+1+\dfrac{x+4}{2006}+1+\dfrac{x+2028}{6}-3=0\)
\(\Leftrightarrow\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}+\dfrac{x+2010}{2006}+\dfrac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right)=0\)
\(\Leftrightarrow x+2010=0\). Do \(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\ne0\)
\(\Leftrightarrow x=-2010\)
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}+\dfrac{x+4}{2006}+\dfrac{x+2028}{6}=0\)
\(\Leftrightarrow\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)+\left(\dfrac{x+4}{2006}+1\right)+\left(\dfrac{x+2028}{6}-3\right)=0+1+1+1-3\) \(\Leftrightarrow\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}+\dfrac{x+2010}{2006}+\dfrac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right)=0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
Vậy S={-2010}
\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}+\dfrac{x+4}{2006}+\dfrac{x+2028}{6}=0\)
\(\frac{x+2}{2008}\)+ 1 + \(\frac{x+3}{2007}\)+1 +\(\frac{x+4}{2006}\)+1 +\(\frac{x+2028}{6}\)-3=0
\(\Leftrightarrow\)\(\frac{x+2+2008}{2008}\)+ \(\frac{x+3+2007}{2007}\) + \(\frac{x+4+2006}{2006}\)+ \(\frac{x+2028-18}{6}\)= 0
\(\Leftrightarrow\) \(\frac{x+2010}{2008}\)+ \(\frac{x+2010}{2007}\)+ \(\frac{x+2010}{2006}\)+ \(\frac{x+2010}{6}\)=0
\(\Leftrightarrow\)(x +2010).\(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)\)=0
\(\Leftrightarrow\)x + 2010 = 0 \(\left(vì\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}>0\right)\)
\(\Leftrightarrow\) x = -2010
Vậy S = \(\left\{-2010\right\}\)
⇔ \(\dfrac{x+2}{2008}\) +1 +\(\dfrac{x+3}{2007}\) +1+\(\dfrac{x+4}{2006}\)+1 +\(\dfrac{2028}{6}\)-3 =0
⇔\(\dfrac{x+2}{2008}+\dfrac{2008}{2008}+\dfrac{x+3}{2007}+\dfrac{2007}{2007}+\dfrac{x+4}{2006}+\dfrac{2006}{2006}+\dfrac{x+2028}{6}-\dfrac{18}{6}=0\)
⇔\(\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}+\dfrac{x+2010}{2006}+\dfrac{x+2010}{6}=0\)
⇔(x+2010)\(\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right)=0\)
Mà \(\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right)\)≠0
⇒x+2010=0
⇔x=-2010
Vậy phương trình có nghiệm x=-2010
Bạn tham khảo link này,định copy ra nhưng cơ mà thôi,tự xem nhé.
Câu hỏi của Silver Bullet - Toán lớp 8 | Học trực tuyến
Giải các phương trình sau:
a) (x2+x)2+ 4(x2+x)=12
b) \(\dfrac{x+1}{2008}\)+\(\dfrac{x+2}{2007}\)+\(\dfrac{x+3}{2006}\)=\(\dfrac{x+4}{2005}\)+\(\dfrac{x+5}{2004}\)+\(\dfrac{x+6}{2003}\)
\(\dfrac{x+1}{2008}+\dfrac{x+2}{2007}+\dfrac{x+3}{2006}=\dfrac{x+4}{2005}+\dfrac{x+5}{2004}+\dfrac{x+6}{2003}\)
⇔\(\dfrac{x+1}{2008}+1+\dfrac{x+2}{2007}+1+\dfrac{x+3}{2006}+1=\dfrac{x+4}{2005}+1+\dfrac{x+5}{2004}+1+\dfrac{x+6}{2003}+1\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}=\dfrac{x+2009}{2005}+\dfrac{x+2009}{2004}+\dfrac{x+2009}{2003}\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}-\dfrac{x+2009}{2005}-\dfrac{x+2009}{2004}-\dfrac{x+2009}{2003}=0\)
⇔ \(\left(x+2009\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}-\dfrac{1}{2005}-\dfrac{1}{2004}-\dfrac{1}{2003}\right)=0\)
⇔ x+2009=0
⇔ x=-2009
vậy x=-2009 là nghiệm của pt
a) ( x2 + x )2 + 4( x2 + x ) = 12
<=> ( x2 + x )2 + 4( x2 + x ) + 4 - 16 = 0
<=> ( x2 + x + 2)2 - 16 = 0
<=> ( x2 + x + 2 + 4)( x2 + x + 2 - 4) = 0
<=> ( x2 + x + 6 )( x2 + x - 2) = 0
Do : x2 + x + 6
= x2 + 2.\(\dfrac{1}{2}x+\dfrac{1}{4}+6-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\) ≥ \(\dfrac{23}{4}\) > 0 ∀x
=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1) + 2( x - 1) = 0
<=> ( x - 1)( x + 2 ) = 0
<=> x = 1 hoặc : x = - 2
KL.....
b) Kuroba kaito làm rùi nhé