Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Diệu Linh
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2021 lúc 16:11

\(4\le\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)

\(\Rightarrow2\le\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\Rightarrow x+y\ge2\)

\(\Rightarrow P\ge\dfrac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

Nguyễn Việt Lâm
7 tháng 5 2021 lúc 21:39

Trước hết áp dụng BĐT: \(ab\le\dfrac{1}{4}\left(a+b\right)^2\)

Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+1+\sqrt{y}+1\right)^2\)

Mà \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\Rightarrow\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\ge4\)

\(\Rightarrow\left(\sqrt{x}+\sqrt{y}+2\right)^2\ge4^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\)

Lại áp dụng tiếp: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Ta được: \(\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\)

\(\Rightarrow\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\ge2\)

Bình phương lên: \(2\left(x+y\right)\ge4\Rightarrow x+y\ge2\)

Phần cuối chắc là hoàn toàn cơ bản rồi

Kinder
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 17:30

\(T=\sqrt{\left(3-x\right)^2+\left(4-y\right)^2}+\sqrt{x^2+y^2}\)

\(T\ge\sqrt{\left(3-x+x\right)^2+\left(4-y+y\right)^2}=5\)

\(T_{min}=5\) khi \(4x=3y\)

Khương Vũ Phương Anh
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
erosennin
Xem chi tiết
Vo Trong Duy
Xem chi tiết
Hoàng Phúc
19 tháng 5 2017 lúc 16:34

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

Thắng Nguyễn
19 tháng 5 2017 lúc 17:54

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

Hoàng Phúc
19 tháng 5 2017 lúc 20:30

x,y có dương đâu mà AM-GM rồi schwarz hay vậy Thắng ? 

Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2021 lúc 20:44

Bạn tham khảo:

Cho x,y > 0 và \(x+y=\sqrt{10}\) Tìm GTNN của : \(A=\left(1+x^4\right)\left(1+y^4\right)\) - Hoc24

ghdoes
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:38

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

Minato Namikaze
Xem chi tiết
Thiên An
1 tháng 8 2017 lúc 22:02

2. Xem tại đây

1.  \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)

\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)

\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=y=z=1\)

Lyzimi
1 tháng 8 2017 lúc 22:13

1 ) có cách theo cosi đó 

áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)

cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)

minP=3 khi x=y=z=1