Tìm Min: \(\left(x^4+1\right)\left(y^4+1\right)\) với \(x+y=\sqrt{10};x,y>0\)
Giả sử x,y là các số thực dương thỏa mãn điều kiện \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)>=4\)
Tìm Min
\(P=\dfrac{x^2}{y}+\dfrac{y^2}{x}\)
\(4\le\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)
\(\Rightarrow2\le\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\Rightarrow x+y\ge2\)
\(\Rightarrow P\ge\dfrac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Dấu "=" xảy ra khi \(x=y=1\)
Trước hết áp dụng BĐT: \(ab\le\dfrac{1}{4}\left(a+b\right)^2\)
Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+1+\sqrt{y}+1\right)^2\)
Mà \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\Rightarrow\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\ge4\)
\(\Rightarrow\left(\sqrt{x}+\sqrt{y}+2\right)^2\ge4^2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\)
Lại áp dụng tiếp: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Ta được: \(\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\)
\(\Rightarrow\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\ge2\)
Bình phương lên: \(2\left(x+y\right)\ge4\Rightarrow x+y\ge2\)
Phần cuối chắc là hoàn toàn cơ bản rồi
Tìm Min \(T=\sqrt{\left(x-3\right)^2+\left(y-4\right)^2}+\sqrt{x^2+y^2}\)
\(T=\sqrt{\left(3-x\right)^2+\left(4-y\right)^2}+\sqrt{x^2+y^2}\)
\(T\ge\sqrt{\left(3-x+x\right)^2+\left(4-y+y\right)^2}=5\)
\(T_{min}=5\) khi \(4x=3y\)
Tìm MIN:
\(G=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
1) Cho x,y thỏa \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\). Tìm Min: \(A=\frac{x^2}{y}+\frac{y^2}{x}\)
2) Cho x;y>1. Tìm Min: \(B=\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
2, rút gọn B=x^2/(y-1)+y^2/(x-1)
AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y
=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8
minB=8
Câu 1:
Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)
\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)
\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)
Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)
\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)
Lại áp dụng BĐT AM-GM ta có:
\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)
\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Đẳng thức xảy ra khi \(x=y=1\)
x,y có dương đâu mà AM-GM rồi schwarz hay vậy Thắng ?
Cho x,y dương t/m \(x+y=\sqrt{10}\). Tìm GTNN của \(A=\left(x^4+1\right)\left(y^4+1\right)\)
Bạn tham khảo:
Cho x,y > 0 và \(x+y=\sqrt{10}\) Tìm GTNN của : \(A=\left(1+x^4\right)\left(1+y^4\right)\) - Hoc24
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)
\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)
\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)
Bài 1: Cho x, y, z > 0 thay đổi thỏa mãn x + y + z = 3. Tìm min của \(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
Bài 2: Cho x > 1. Tìm min của A = \(\frac{x^4+1}{x\left(x-1\right)\left(x+1\right)}\)
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1