Bạn tham khảo:
Cho x,y > 0 và \(x+y=\sqrt{10}\) Tìm GTNN của : \(A=\left(1+x^4\right)\left(1+y^4\right)\) - Hoc24
Bạn tham khảo:
Cho x,y > 0 và \(x+y=\sqrt{10}\) Tìm GTNN của : \(A=\left(1+x^4\right)\left(1+y^4\right)\) - Hoc24
1. Rút gọn: \(\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\left(\sqrt{4-\sqrt{15}}\right)\)
2. Cho 3 số dương thỏa x + y + z = 2
Tìm GTNN của A = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho x,y > 0 và \(x+y=\sqrt{10}\)
Tìm GTNN của : \(A=\left(1+x^4\right)\left(1+y^4\right)\)
B1: Cho x;y là 2 số dương thay đổi .Tìm GTNN của \(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
B2: Cho \(x\ge-1,y\ge1\) thỏa mãn \(\sqrt{x+1}+\sqrt{y-1}=\sqrt{2\left(x-y\right)^2+10x-6y+8}\).
Tìm GTNN của \(P=x^4+y^2-5\left(x+y\right)+2020\)
B3: Tìm GTNN của \(M=\dfrac{x+12}{\sqrt{x}+2}\)
1. Cho 3 số dương \(x,y,z\) thoả mãn điều kiện \(xy+yz+zy=1\) . Tính:
\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
2. Tìm Min của biểu thức:
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
3. Cho biểu thức:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) với \(x>0;y>0\)
a, Rút gọn A.
b, Biết \(xy=16\) . Tìm các giá trị của x,y để A có giá trị nhỏ nhất. Tìm giá trị đó
cho x,y,z>0 và x+y+z=\(\sqrt{3}\)
tìm GTNN \(A=\dfrac{1}{\sqrt{x\left(y+2z\right)}}+\dfrac{1}{\sqrt{y\left(z+2x\right)}}+\dfrac{1}{\sqrt{z\left(x+2y\right)}}\)
Cho 3 số dương x,y,z thỏa mãn \(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\). Tính A=\(\left(1+\dfrac{\sqrt{x}}{\sqrt{y}}\right)\left(1+\dfrac{\sqrt{y}}{\sqrt{z}}\right)\left(1+\dfrac{\sqrt{z}}{\sqrt{x}}\right)\)
1.Rút gọn: \(x=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)}\)
2. cho hàm số y=(m-1)x+2m. tìm tất cả các giá trị của m để đồ thị hàm số y=(m-1)x+2m cắt hai trục tọa độ và tạo với hai trục một tam giác có diện tích bằng 1 ( đvdt)
3. a) giải phương trình \(\left(x+5\right)\sqrt{x+3}=\left(x+1\right)\left(x^2+2x+3\right)\)
b) Tìm x, y nguyên thỏa mãn \(x^2-xy+y^2=2x-y\)
cho x,y là 2 số thực dương thỏa mãn đk:
\(x+\sqrt{1-x^2}=2015\left(\sqrt{1+y^2}-y\right)\).
tìm GTNN của biểu thức P=x+y
Cho biểu thức :
\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
a) Tìm ĐKXĐ của x và y để P xác định . Rút gọn P
b) Tìm x , y nguyên thỏa mãn phương trình P = 2