Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 14:21

a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)

\(=-\dfrac{1}{10}\)

9<10

=>1/9>1/10

=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)

=>\(A>-\dfrac{1}{9}\)

b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)

\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)

20<21

=>\(\dfrac{11}{20}>\dfrac{11}{21}\)

=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)

=>\(B< -\dfrac{11}{21}\)

Nguyễn Minh Dương
Xem chi tiết
HT.Phong (9A5)
20 tháng 9 2023 lúc 15:20

\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)

\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)

\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)

\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)

\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)

\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\) 

Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)

\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)

\(\Rightarrow B< \dfrac{1}{2}\)     

Phạm Đăng Khoa
Xem chi tiết
Trương Quang Khánh
17 tháng 8 2021 lúc 20:23

\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)

\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)

\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)

\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)

Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B

Nguyễn Minh Dương
Xem chi tiết
HT.Phong (9A5)
19 tháng 9 2023 lúc 18:05

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)

\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)

\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)

\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\) 

\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)

\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)

\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)

\(B=-1\) (2019 số -1) 

Mà: \(-1< \dfrac{1}{2}\)

\(\Rightarrow B< \dfrac{1}{2}\)

 \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1

Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:

        (2020 - 2):1 + 1 = 2019 (số hạng)

Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)

 

 

 

 

 

Võ Nguyễn Mai Hương
Xem chi tiết
 Mashiro Shiina
14 tháng 12 2017 lúc 23:52

Sửa đề:

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)....\left(\dfrac{1}{100^2}-1\right)\)

\(A=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)\left(\dfrac{1}{4^2}-\dfrac{4^2}{4^2}\right)....\left(\dfrac{1}{100^2}-\dfrac{100^2}{100^2}\right)\)

\(A=\dfrac{\left(1-2^2\right)}{2^2}.\dfrac{\left(1-3^2\right)}{3^2}.\dfrac{\left(1-4^2\right)}{4^2}....\dfrac{\left(1-100^2\right)}{100^2}\)

\(A=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}.\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}.\dfrac{\left(1-4\right)\left(1+4\right)}{4^2}......\dfrac{\left(1-100\right)\left(1+100\right)}{100^2}\)

\(A=\dfrac{-3}{2^2}.\dfrac{-8}{3^2}.\dfrac{-15}{4^2}....\dfrac{-9999}{100^2}\)

Ta xét từ \(2\) đến \(100\) có: \(\dfrac{\left(100-2\right)}{1}+1=99\)

\(50\) là số lẻ nên tích trên là số âm

Hay \(-A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\)

\(-A=\dfrac{1.3.2.4.3.5....99.101}{2.2.3.3.4.4.....100.100}\)

\(-A=\dfrac{1.2.3....99}{2.3.4....100}.\dfrac{3.4.5....101}{2.3.4....100}\)

\(-A=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)

\(A=-\dfrac{101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

Đạt Trần
14 tháng 12 2017 lúc 23:44

Tập hợp Q các số hữu tỉ

Duong Thi Nhuong
Xem chi tiết
Ngáo Nu
19 tháng 4 2017 lúc 23:27

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

Ánh Đinh
Xem chi tiết
Nguyễn Thanh Hằng
18 tháng 8 2017 lúc 13:06

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)..............\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).............\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}.\dfrac{3}{2}.\dfrac{-2}{3}.\dfrac{4}{3}.............\dfrac{-99}{100}.\dfrac{101}{100}\)

\(=\dfrac{-\left(1.2.3....99\right)}{2.3......100}.\dfrac{3.4...101}{2.3....100}\)

\(=\dfrac{-1}{100}.\dfrac{101}{2}\)

\(=\dfrac{-101}{200}< \dfrac{-1}{2}\)

\(\Leftrightarrow A< \dfrac{-1}{2}\)

Nguyễn Thị Ngọc Linh
Xem chi tiết
Nguyễn Huy Tú
29 tháng 7 2017 lúc 9:54

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}.\dfrac{3}{2}.\dfrac{-2}{3}.\dfrac{4}{3}...\dfrac{-99}{100}.\dfrac{101}{100}\)

\(=\dfrac{-\left(1.2...99\right)}{2.3...100}.\dfrac{3.4...101}{2.3...100}=\dfrac{-1}{100}.\dfrac{101}{2}\)

\(=\dfrac{-101}{200}< \dfrac{-1}{2}\)

\(\Rightarrow A< \dfrac{-1}{2}\)

Hoàng Thu Trang
Xem chi tiết
Hoàng Thị Ngọc Anh
28 tháng 3 2017 lúc 13:08

b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)

Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)

Thay (1) vào đề bài:

\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)

\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)

\(\Rightarrow49x+\dfrac{16}{99}=50x\)

\(\Rightarrow x=\dfrac{16}{99}\)

Vậy \(x=\dfrac{16}{99}.\)