Giải PT: \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
Giải pt: \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
giải pt : \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
Giải PT: \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
Giải PT: \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)
\(\Leftrightarrow\dfrac{x^2+12-16}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\dfrac{x^2+5-9}{\sqrt{x^2+5}+3}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{x+2}{\sqrt{x^2+12}+4}-3-\dfrac{x+2}{\sqrt{x^2+5}+3}\right)=0\)
\(\Leftrightarrow x=2\) vì ....................................................................<0.
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)
GIẢI PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
a, ĐKXĐ:...
\(\sqrt{5x+10}=8-x\\ \Leftrightarrow5x+10=64-16x+x^2\\ \Leftrightarrow x^2-21x+54=0\)
.....
b, ĐKXĐ:...
\(\sqrt{4x^2+x-12}=3x-5\\ \Leftrightarrow4x^2+x-12=9x^2-30x+25\\ \Leftrightarrow5x^2-31x+37=0\)
.....
Giải pt:
\(\sqrt{x^2+5}+3x=\sqrt{x^2+12}+5.\)
ĐKXĐ \(x \ge 0\)
+Xét x = 2 ta thấy là nghiệm của pt.
+Xét x > 2 ta thấy vế phải của pt lớn hơn vế trái nên suy ra vô nghiệm
+Xét 0 ≤ x < 2 ta thấy vế phải của pt nhỏ hơn vế trái nên pt cũng vô nghiệm
Kết luận: .................
trình bày ra đc ko bn!? xét x=2 thế nào đc!
giải pt :
a, \(729x^4+8\sqrt{1-x^2}=36\)
b, \(3x^2-12x-5\sqrt{10+4x-x^2}+12=0\)
a.
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)
Pt trở thành:
\(729\left(t^4-2t^2+1\right)+8t=36\)
\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)
\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)
b.
ĐKXĐ: ...
\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)
Đặt \(\sqrt{10+4x-x^2}=t\ge0\)
\(\Rightarrow-3t^2-5t+42=0\)
\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{10+4x-x^2}=3\)
\(\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow x=...\)
\(2\sqrt{3x-5}-3\sqrt{12-x}+x^2+x-7=0\)
giải pt trên
ĐKXĐ : \(\frac{5}{3}\le x\le12\)
\(2\sqrt{3x-5}-3\sqrt{12-x}+x^2+x-7=0\)
\(\Leftrightarrow\left(2\sqrt{3x-5}-4\right)+\left(9-3\sqrt{12-x}\right)+x^2+x-12=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{2\sqrt{3x-5}+4}+\frac{9\left(x-3\right)}{9+3\sqrt{12-x}}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{2\sqrt{3x-5}+4}+\frac{9}{9+3\sqrt{12-x}}+x+4\right)=0\)
\(\Leftrightarrow x=3\)( vì vế trong ngoặc thứ 2 > 0 \(\forall\)\(\frac{5}{3}\le x\le12\))