cho tam giac vuoong ABC tai A duong cao AH . SABC=18cm. SACH=50cm. tinh BC,AH,AB,AC
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
cho tam giac ABC can tai A ;AB=AC=17;BC=16. tinh duong cao AH va goc A, goc B cua tam giac ABC
AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến
\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)
Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)
Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)
Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)
cho tam giac ABC vuong tai A, duong cao AH ( H thuoc BC). Biet BC=18cm, BH = 6cm.tinh do dai cac canh AB,AC
vì tam giác ABC vuông tại A, đường cao AH
=> AC=BC*CH=18*(18-6)=216
và AB=BC*BH=18*6=108
(áp dụng định lí phần hệ thức lượng trong tam giác vuông)
mik nhầm phải là
AC^2=BC*CH=216
=> AC=\(\sqrt{216}\)
và AB^2=BC*BH
=> AB=\(\sqrt{108}\)
THẾ này mới đúng nha bạn
Cho tam giac ABC vuong tai A (AB<AC) ve duong cao AH (H thuoc BC)
A)cm tam giac ABH~tam giac CBA suy ra AB binh =BH.BC
B)cho AB=6cm, AC=8cm . Tinh BC.Tren canh BC lay diem E sao cho CE=4cm, cm BE binh=BH.HC
C) tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D, duong phan giac cua goc AHC cat AC tai F, duong thang DF cat AH tai I va cat CB tai K.cm DI.FK=DK.FI
1. Cho tam giac ABC vuong tai A phan giac AH biet CD =68cm, BD =51cm. Tinh BH,HC
2. Cho tam giac ABC vuong tai A duong cao AH biet AB=7,5cm ; AH=6cm.
a) Tinh AC,BC
b) Tinh cos B, cos C
Cau 1: Cho tam giac ABC cuong tai A, AB=8cm; AC=15cm. Ve duong cao AH
a) chung minh AB^2= BH. BC
b) Tinh BH, CH, AH, BC
c) Ve phan giac AD cua tam giac ABC. Chung minh H nam giua B va D
d) Tinh ti so dien tich D HAC va D A.BC
Cau 2: Cho tam giac ABC vuong tai A, AB=5cm; Ac=12cm, ve duong cao AH va duong phan giac AD.
a) Tinh BC, BD
b) Chung minh D ACH: D ABC; tinh AH
c) Qua B ke duong thang vuong goc voi AB cat tia AD tai K. Chung minh AB.AD =AC. KD
.Cau 3: Cho tam giac ABC vuong A co AB = 5cm; AC=12cm. Ve dcao AH va pgiac AD cua goc BAC
a) Tih BC; BD
b) Chung minh D HAC : D ABC
c) Qua B ke duong vgoc voi BA cat AD tai k. Chung minh AB.AD= AC.KD
Cho tam giac ABC vuong tai A ( AB<AC) ve duong cao AH (H thuoc BC)
A) cm tam giac ABH dong dang tam giac CBA suy ra AB binh =BH.BC
B) Cho AB =6cm , AC=8cm. Tinh BC .Tren canh BC lay diem E sao cho CE=4cm, cm BE binh =BH.HC
C) Tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D duong phan giac cua goc AHC cat AC tai F duong thanh DF cat AH tai I va cat CB tai K. Cm DI .FK=DK.FI
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
cho tam giac ABC vuong tai A AB=12, AC=16 ve duong cao AH duong phan giac BD cat AH tai E
a) chung minh tam giac ABC dong dang tam giac HBA tu do suy ra AB^2=BH*BC
B)Tinh AD
c) chung minh DB/EB=DC/DA
a)Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{BAC}=\widehat{BHA}\)(=\(90^0\))
\(\widehat{B}\)chung
=>\(\Delta ABC\)~\(\Delta HBA\)(g.g)
=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
=>\(AB^2=HB.BC\)