Cho \(A=\dfrac{9}{10!}+\dfrac{10}{11!}+......+\dfrac{999}{1000!}\)
C/m: \(A< \dfrac{1}{9!}\)
Chứng minh rằng :
a) \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\)
b) \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+...+\dfrac{9}{1000!}< \dfrac{1}{9!}\)
a) Đặt :
\(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.................+\dfrac{1}{100!}\)
Ta thấy :
\(\dfrac{1}{2!}=\dfrac{1}{1.2}\)
\(\dfrac{1}{3!}=\dfrac{1}{1.2.3}\)
\(\dfrac{1}{4!}=\dfrac{1}{1.2.3.4}< \dfrac{1}{3.4}\)
.....................................
\(\dfrac{1}{100!}=\dfrac{1}{1.2.3..........100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}< 1\)
\(\Rightarrow A< 1\rightarrowđpcm\)
b) Đặt :
\(B=\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+.............+\dfrac{9}{1000!}\)
Ta thấy :
\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)
\(\dfrac{9}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)
...................................................
\(\dfrac{9}{1000!}< \dfrac{1000-1}{1000!}=\dfrac{1}{999!}-\dfrac{1}{1000!}\)
\(\Rightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+............+\dfrac{1}{999!}-\dfrac{1}{1000!}\)
\(B< \dfrac{1}{9!}-\dfrac{1}{1000!}\)
\(\Rightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)
~ Chúc bn học tốt ~
Chứng minh rằng: \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+...+\dfrac{9}{1000!}< \dfrac{1}{9!}\)
Ta có:
\(\dfrac{9}{n!}\)< \(\dfrac{n-1}{n!}\) = \(\dfrac{1}{(n-1)!} - \dfrac{1}{n!}\) với n > 10 (n thuộc Z)
\(\Rightarrow\) \(\dfrac{9}{10!} + \dfrac{9}{11!} + \dfrac{9}{12!} + ... +\dfrac{9}{1000!} \)
= \(\dfrac{1}{9!} - \dfrac{1}{10!} + \dfrac{9}{11!} + \dfrac{9}{12!} + ... +\dfrac{9}{1000!}\)
\(\Rightarrow\) \(\dfrac{1}{9!} - \dfrac{1}{10!} + \dfrac{1}{10!} - \dfrac{1}{11!} + \dfrac{1}{11!} - \dfrac{1}{12!} + ....\)
= \(\dfrac{1}{9!} - \dfrac{1}{1000!}\)
\(\Rightarrow \) \(\dfrac{9}{10!} + \dfrac{9}{11!} + ...+ \dfrac{9}{1000!} < \dfrac{1}{9!}\)
Chúc bn hc tốt.
So sánh :
a) Chứng minh rằng : M = \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.......+\dfrac{1}{100!} \)
Chứng minh rằng : M <1 .
b) Chứng minh rằng : N = \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+........+\dfrac{9}{1000!}\)
Chứng minh rằng : N < \(\dfrac{1}{9!}\)
a, Ta có :
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)
Tính rồi rút gọn (theo mẫu):
Mẫu: \(\dfrac{9}{10}-\dfrac{4}{10}=\dfrac{9-4}{10}=\dfrac{5}{10}=\dfrac{1}{2}\) |
a) \(\dfrac{15}{8}-\dfrac{13}{8}\) b) \(\dfrac{7}{15}-\dfrac{2}{15}\) c) \(\dfrac{11}{12}-\dfrac{2}{12}\) d) \(\dfrac{19}{7}-\dfrac{5}{7}\)
a: \(\dfrac{15}{8}-\dfrac{13}{8}=\dfrac{15-13}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\dfrac{7}{15}-\dfrac{2}{15}=\dfrac{7-2}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c: \(\dfrac{11}{12}-\dfrac{2}{12}=\dfrac{11-2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
d: \(\dfrac{19}{7}-\dfrac{5}{7}=\dfrac{19-5}{7}=\dfrac{14}{7}=2\)
Bài 1 . Thực hiện phép tính sau :
a. \(\dfrac{-4}{11}\). \(\dfrac{7}{9}\)+\(\dfrac{-4}{11}\) . \(\dfrac{2}{9}\) - \(\dfrac{7}{11}\)
b. \(\dfrac{3}{5}\):\(\dfrac{-7}{10}\)+ 0,5 - \(\left(-\dfrac{9}{14}\right)\)
c. \(\dfrac{3}{5}\)-\(\dfrac{8}{5}\): (5,25+75%)
Bài 2 . Tìm x :
a) x - \(\dfrac{1}{2}\)= \(\dfrac{-1}{10}\) b.\(\dfrac{2}{3}x\) - \(\dfrac{7}{6}\)=\(\dfrac{5}{2}\) c)2,5 - \(\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)\) =\(\dfrac{3}{4}\)
Mik làm Bài 2 nhé ~
Bài 2 :
a) \(x-\dfrac{1}{2}=-\dfrac{1}{10}\)
\(x=-\dfrac{1}{10}+\dfrac{1}{2}\)
\(x=\dfrac{2}{5}\)
b) \(\dfrac{2}{3}x-\dfrac{7}{6}=\dfrac{5}{2}\)
\(\dfrac{2}{3}x=\dfrac{5}{2}+\dfrac{7}{6}\)
\(\dfrac{2}{3}x=\dfrac{11}{3}\)
\(x=\dfrac{11}{3}:\dfrac{2}{3}\)
\(x=\dfrac{11}{3}.\dfrac{3}{2}\)
\(x=\dfrac{11}{2}\)
c) \(2,5-\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=\dfrac{3}{4}\)
\(\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=2,5-\dfrac{3}{4}\)
\(\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=\dfrac{5}{2}-\dfrac{3}{4}\)
\(\dfrac{1}{8}x+\dfrac{1}{2}=\dfrac{7}{4}\)
\(\dfrac{1}{8}x=\dfrac{7}{4}-\dfrac{1}{2}\)
\(\dfrac{1}{8}x=\dfrac{5}{4}\)
\(x=10\)
Bài 1:
a) \(\dfrac{-4}{11}.\dfrac{7}{9}+\dfrac{-4}{11}.\dfrac{2}{9}-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}.\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}.1-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}-\dfrac{7}{11}\)
\(=-1\)
b) \(\dfrac{3}{5}:\dfrac{-7}{10}+0,5-\left(\dfrac{-9}{14}\right)\)
\(=\dfrac{-6}{7}+\dfrac{1}{2}+\dfrac{9}{14}\)
\(=\dfrac{2}{7}\)
c) \(\dfrac{3}{5}-\dfrac{8}{5}:\left(5,25+75\%\right)\)
\(=\dfrac{3}{5}-\dfrac{8}{5}:\left(\dfrac{21}{4}+\dfrac{3}{4}\right)\)
\(=\dfrac{3}{5}-\dfrac{8}{5}:6\)
\(=\dfrac{3}{5}-\dfrac{4}{15}\)
\(=\dfrac{1}{3}\)
Bài 2:
a) \(x-\dfrac{1}{2}=\dfrac{-1}{10}\)
\(x=\dfrac{-1}{10}+\dfrac{1}{2}\)
\(x=\dfrac{2}{5}\)
b) \(\dfrac{2}{3}x-\dfrac{7}{6}=\dfrac{5}{2}\)
\(\dfrac{2}{3}x=\dfrac{5}{2}+\dfrac{7}{6}\)
\(\dfrac{2}{3}x=\dfrac{11}{3}\)
\(x=\dfrac{11}{3}:\dfrac{2}{3}\)
\(x=\dfrac{11}{2}\)
c) \(2,5-\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=\dfrac{3}{4}\)
\(\dfrac{1}{8}x+\dfrac{1}{2}=\dfrac{5}{2}-\dfrac{3}{4}\)
\(\dfrac{1}{8}x+\dfrac{1}{2}=\dfrac{7}{4}\)
\(\dfrac{1}{8}x=\dfrac{7}{4}-\dfrac{1}{2}\)
\(\dfrac{1}{8}x=\dfrac{5}{4}\)
\(x=\dfrac{5}{4}:\dfrac{1}{8}\)
\(x=10\)
Cho \(A=\dfrac{13}{25}+\dfrac{9}{10}-\dfrac{11}{15}+\dfrac{13}{21}-\dfrac{15}{28}+\dfrac{17}{36}-...+\dfrac{197}{4851}-\dfrac{199}{4950}\)
Chứng minh \(A>\dfrac{9}{10}\)
Không quy đồng ,hãy so sánh hai phân số
a \(\dfrac{19}{10}và\dfrac{10}{11}\)
b \(\dfrac{11}{10}và\dfrac{12}{11}\)
c \(\dfrac{9}{10}và\dfrac{10}{11}\)
a. 19/10 > 10/11
b. 11/10 = 12/11
c. 9/10 = 10/11
a)\(\dfrac{19}{10}>\dfrac{10}{11}\)
b)\(\dfrac{11}{10}=\dfrac{12}{11}\)
c)\(\dfrac{9}{10}< \dfrac{10}{11}\)
Tính:
a) \(\dfrac{5}{16}-\dfrac{5}{24};\)
b) \(\dfrac{2}{11}+\left(\dfrac{-5}{11}-\dfrac{9}{11}\right)\);
c) \(\dfrac{1}{10}-\left(\dfrac{5}{12}-\dfrac{1}{15}\right).\)
\(a.\)
\(\dfrac{5}{16}-\dfrac{5}{24}=\dfrac{5\cdot3-5\cdot2}{48}=\dfrac{15-10}{48}=\dfrac{5}{48}\)
\(b.\)
\(\dfrac{2}{11}+\left(\dfrac{-5}{11}-\dfrac{9}{11}\right)=\dfrac{2-5-9}{11}=-\dfrac{12}{11}\)
\(c.\)
\(\dfrac{1}{10}-\left(\dfrac{5}{12}-\dfrac{1}{15}\right)=\dfrac{1}{10}-\dfrac{5}{12}+\dfrac{1}{15}=\dfrac{6-5\cdot5+4}{60}=-\dfrac{15}{60}=-\dfrac{1}{4}\)
a) \(\dfrac{5}{16}-\dfrac{5}{24}=\dfrac{15}{48}-\dfrac{10}{48}=\dfrac{15-10}{48}=\dfrac{5}{48}\)
b)\(\dfrac{2}{11}+\left(\dfrac{-5}{11}-\dfrac{9}{11}\right)=\dfrac{2}{11}-\dfrac{5}{11}-\dfrac{9}{11}=\dfrac{2-5-9}{11}=\dfrac{-12}{11}\)
c)\(\dfrac{1}{10}-\left(\dfrac{5}{12}-\dfrac{1}{15}\right)=\dfrac{1}{10}-\dfrac{7}{20}=\dfrac{2}{20}-\dfrac{7}{20}=\dfrac{-5}{20}=\dfrac{-1}{4}\)
Thực hiện phép tính (hợp lí nếu có thể):
a) \(13\dfrac{2}{7}\) : (\(\dfrac{-8}{9}\)) + \(2\dfrac{5}{7}\) : (\(\dfrac{-8}{9}\))
b) (\(\dfrac{-6}{11}\)) . \(\dfrac{7}{10}\) . (\(\dfrac{11}{-6}\)) . (-20)
c) (\(-1\dfrac{1}{2}\)) : \(\dfrac{3}{4}\) . (\(-4\dfrac{1}{2}\))
a) \(=\left(13\dfrac{2}{7}+2\dfrac{5}{7}\right):\left(-\dfrac{8}{9}\right)\)
\(=16:\dfrac{-8}{9}=\dfrac{-8\cdot\left(-2\right)\cdot9}{-8}=-18\)
b)
\(=\left(\dfrac{-6}{11}\cdot\dfrac{11}{-6}\right)\cdot\dfrac{7\cdot10\cdot\left(-2\right)}{10}\)
\(=-14\)
c) \(=\dfrac{-1}{2}\cdot\dfrac{4}{3}\cdot\dfrac{-7}{2}\)
\(=\dfrac{-1\cdot2\cdot2\cdot\left(-7\right)}{2\cdot3\cdot2}=\dfrac{7}{3}\)