Y = log3 (x2 - 2(m+1)x+9)
Tìm m để ham số xác định mọi x thuộc R
Tìm tất cả các giá trị của m để hàm số y = log 3 − x 2 + m x + 2 m + 1 xác định với mọi x ∈ l ; 2 .
A. m ≥ − 1 3
B. m ≥ 3 4
C. m > 3 4
D. m < − 1 3
Đáp án B
Hàm số xác định với mọi x ∈ 1 ; 2 ⇔ − x 2 + m x + 2 m + 1 > 0 ∀ x ∈ 1 ; 2 .
⇔ m > x 2 − 1 x + 2 = g x ∀ x ∈ 1 ; 2 ⇔ m > M ax 1 ; 2 g x
Xét g x = x 2 − 1 x + 2 = x − 2 + 3 x + 2 ⇒ g ' x = 1 − 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó lim x → 2 f x = 3 4 . Vậy m ≥ 3 4 là giá trị cần tìm.
Tìm tất cả các giá trị của m để hàm số y = log3 (–x2 + mx + 2m + 1) xác định với mọi x ∈ 1 ; 2
A. m ≥ - 1 3
B. m ≥ 3 4
C. m > 3 4
D. m < - 1 3
Đáp án B
Hàm số xác định với mọi x ∈ 1 ; 2
<=> –x2 + mx + 2m + 1 > 0 ∀ x ∈ 1 ; 2
X é t g x = x 2 - 1 x + 2 v ớ i x ∈ 1 ; 2 c ó :
g x = x 2 - 1 x + 2 = x - 2 + 3 x + 2
⇒ g ' x = 1 - 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó g(x) đồng biến trên khoảng (1;2)
⇒ m ≥ g 2 = 3 4 là giá trị cần tìm.
Tìm tất cả các giá trị của m để hàm số y = log 3 − x 2 + m x + 2 m + 1 xác định với mọi x ∈ ( 1 ; 2 )
A. m ≥ − 1 3
B. m ≥ 3 4
C. m > 3 4
D. m < − 1 3
Đáp án B
Hàm số xác định với mọi x ∈ ( 1 ; 2 ) ⇔ − x 2 + m x + 2 m + 1 > 0 ∀ x ∈ 1 ; 2
⇔ m x + 2 > x 2 − 1 ∀ x ∈ 1 ; 2 ⇔ m > x 2 − 1 x + 2 ∀ x ∈ 1 ; 2 ⇔ m > M a x 1 ; 2 g x
Xét g x = x 2 − 1 x + 2 với x ∈ 1 ; 2 ta có
g x = x 2 − 1 x + 2 = x − 2 + 3 x + 2 ⇒ g ' x = 1 − 3 x + 2 2 > 0 ∀ x ∈ 1 ; 2
Do đó g x đồng biến trên khoảng 1 ; 2 ⇒ m ≥ g 2 = 3 4 là giá trị cần tìm
Tìm tất cả m để hàm số \(y=\sqrt{5sin4x-6cos4x+2m-1}\) xác định với mọi x thuộc R
Hàm xác định trên R khi và chỉ khi:
\(5sin4x-6cos4x+2m-1\ge0;\forall x\)
\(\Leftrightarrow5sin4x-6cos4x\ge1-2m;\forall x\)
\(\Leftrightarrow1-2m\le\min\limits_{x\in R}\left(5sin4x-6cos4x\right)\)
Ta có: \(\left(5sin4x-6cos4x\right)^2\le\left(5^2+\left(-6\right)^2\right)\left(sin^24x+cos^24x\right)=61\)
\(\Rightarrow5sin4x-6cos4x\ge-\sqrt{61}\)
\(\Rightarrow1-2m\le-\sqrt{61}\)
\(\Rightarrow m\ge\dfrac{1+\sqrt{61}}{2}\)
Tìm m để hàm số xác định với mọi x thuộc R : \(Y=\sqrt{2m\cos^2x+\left(2-m\right)\cos x+4m-1}\)
để hàm số xác định với mọi x thuộc R thì
\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)
mà \(2cos^2x-cosx+4>0\) nên :
\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)
vậy điều kiện của m là : \(m\ge\frac{3}{7}\)
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
Có bao nhiêu giá trị nguyên của m thuộc khoảng (-2019; 2019) để hàm số sau có tập xác định là D = R
y = x + m + x 2 + 2 ( m + 1 ) x + m 2 + 2 m + 4 + log 2 ( x - m + 2 x 2 + 1 )
A. 2020
B. 2021
C. 2018
D. 2019
Tìm tất cả các giá trị của m đểm hàm số xác định với mọi x ϵ R
(m-1)x2-2(m-2)x+2-m > 0
`@TH1: m-1=0<=>m=1`
`=>2x+1 > 0<=>x > -1/2`
`=>m=1` loại
`@TH2: m-1 ne 0<=>m ne 1`
`=>(m-1)x^2-2(m-2)x+2-m > 0 AA x in RR`
`=>{(m-1 > 0),(\Delta' < 0):}`
`<=>{(m > 1),((m-2)^2-(2-m)(m-1) < 0):}`
`<=>{(m > 1),(3/2 < m < 2):}`
`=>3/2 < m < 2`
Cho hàm số :
y = √(4 - x2) +1/√(x+m).Tìm giá trị của m để hàm số xác định với mọi x thuộc [ 0;1]