Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức fireshock
Xem chi tiết
Nguyễn Đức Trí
28 tháng 8 2023 lúc 16:23

Áp dụng công thức tỉ lệ phân số ta có : 

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)

Nguyễn Minh Tú
Xem chi tiết
Giang
9 tháng 8 2017 lúc 9:50

Giải:

Theo đề ra, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2a}{2b}=\dfrac{2a+c}{2b+d}\)

\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a}{b}\)

\(\Rightarrowđpcm\).

Chúc bạn học tốt!!!

Mysterious Person
9 tháng 8 2017 lúc 9:51

ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow2ab+ad=2ab+bc\)

\(\Leftrightarrow a\left(2b+d\right)=b\left(2a+c\right)\Leftrightarrow\dfrac{2a+c}{2b+b}=\dfrac{a}{b}\)(đpcm)

Trần Quốc Lộc
9 tháng 8 2017 lúc 10:39

Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{2a}{2b}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{2a}{2b}=\dfrac{c}{d}=\dfrac{2a+c}{2b+d}\)

\(\Rightarrow\dfrac{2a+c}{2b+d}=\dfrac{2a}{2b}\)

\(\Rightarrow\dfrac{2a+c}{2b+d}=\dfrac{a}{b}\left(ĐPCM\right)\)

Vậy \(\dfrac{2a+c}{2b+d}=\dfrac{a}{b}\)

dream XD
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 20:27

`a/b<(a+c)/(b+d)`

`<=>a(b+d)<b(a+c)`

`<=>ab+ad<ad<bc`

`<=>ad<bc`

`<=>a/b<c/d`(theo giả thiết)

`(a+c)/(b+d)<c/d`

`<=>d(a+c)<c(b+d)`

`<=>ad+cd<bc+dc`

`<=>ad<bc`

`<=>a/b<c/d`(theo giả thiết)`

`=>a/b<(a+c)/(b+d)<c/d`

Nguyễn ngọc Khế Xanh
Xem chi tiết
Edogawa Conan
8 tháng 10 2021 lúc 21:28

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)

   \(\Leftrightarrow1+\dfrac{b}{a}=1+\dfrac{d}{c}\)

   \(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)

Nguyễn Hoàng Minh
8 tháng 10 2021 lúc 21:28

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng t/c dtsbn:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)

Công chúa vui vẻ
Xem chi tiết
Nguyễn Thị Bích Thủy
4 tháng 11 2017 lúc 18:55

Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chât dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Công chúa vui vẻ
4 tháng 11 2017 lúc 19:28

Nguyễn Huy Tú, Phương An, Hoàng Thị Ngọc Mai, Nguyễn Thanh Hằng, Akai Haruma, An Nguyễn Bá, lê thị hương giang, Ace Legona, Hà Nam Phan Đình, Mysterious Person, DƯƠNG PHAN KHÁNH DƯƠNG, Trần Việt Linh, Võ Đông Anh Tuấn, Hoàng Lê Bảo Ngọc, Toshiro Kiyoshi, Silver bullet,...

Công chúa vui vẻ
4 tháng 11 2017 lúc 19:29

Shizadon

sdhsdfgh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:49

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 16:54

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Liễu Lê thị
Xem chi tiết
Rin Huỳnh
7 tháng 11 2021 lúc 12:28

Theo tính chất dãy tỉ số bằng nhau, ta có:

a/b = b/c = c/d = (a + b + c)/(b + c + d)

--> ((a + b + c)/(b + c + d))^3 = a^3/b^3

Cần chứng minh:

a^3/b^3 = a/d

<=> a^3/b^3 = a^3/(a^2.d)

--> b^3 = a^2.d

Mà ad = bc (do a/b = c/d)

--> b^3 = abc

<=> b^2 = ac (luôn đúng do a/b = b/c)

--> đpcm

Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 14:54

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>a=bk; c=dk

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: a/a+b=c/c+d

Lê Hào 7A4
Xem chi tiết
Gô đầu moi
28 tháng 12 2021 lúc 16:23

Bạn à tôi chịu

 

Lê Hào 7A4
28 tháng 12 2021 lúc 16:28

hihithì nó khó thiệt mà

Nguyễn Hoàng Minh
28 tháng 12 2021 lúc 20:57

Sửa: CMR: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\\ \Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3\left(1\right)\\ \dfrac{a}{b}=\dfrac{b}{c}=k\Rightarrow a=bk;b=ck\Rightarrow a=ck^2\\ \Rightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{ck\cdot c}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)