Hãy rút gọn:
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2
Bài 1: Cho a+b+c=0; rút gọn biểu thức A= a^2/(a^2-b^2-c^2) + b^2/(b^2-c^2-a^2) + c^2/(c^2-b^2-a^2)
Bài 2: Cho abc=2; rút gọn A= a/(ab+a+2) + b/(bc+b+1) + 2c/(ac+2c+2)
Cho a+b+c=0 hãy rút gọn:
A=\(\frac{a^2}{a^2-b^2-C^2}+\frac{b^2}{b^2-a^2-c^2}+\frac{c^2}{c^2-a^2-c^2}\)
B=\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
a/ \(a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+c^2+2bc\Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự : \(b^2-a^2-c^2=2ac\) , \(c^2-a^2-b^2=2ab\)
Suy ra \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)\)
Ta sẽ chứng minh nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
Thật vậy : \(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab.\left(-c\right)=3abc\)
Áp dụng được \(A=\frac{3abc}{2abc}=\frac{3}{2}\)
b/ Tương tự.
Rút gọn biểu thức A= 2/a-b+2/b-c+2/c-a+(a-b)^2+(b-c)^2+(c-a)^2/ (a-b)(b-c)c-a)
Bài 2 Rút gọn biểu thức
a. (a + b)3 + (a − b)3
b. (a + b + c)2 + (a − b − c)2 + (b − c − a)2 + (c − a − b)2
a) (a+b)3+(a-b)3=a3+3a2b+3ab2+b3+a3-3a2b+3ab2-b3
=2a3+6ab2
b) (a + b + c)2 + (a − b − c)2 + (b − c − a)2 + (c − a − b)2
=a2+b2+c2+2ab+2bc+2ca+a2+b2+c2-2ab+2bc-2ac+a2+b2+c2-2bc+2ca-2ba+a2+b2+c2-2ca+2ab-2cb
=4a2+4b2+4c2
a) Ta có: \(\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\cdot\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\cdot\left(a^2+3b^2\right)\)
\(=2a^3+6ab^2\)
Rút gọn:
a) (a+b+c)^2-(a+b)^2-(a+c)^2-(b+c)^2
b) (a+b+c)^2+(a-b+c)^2+(a+b-c)^2+(-a+b+c)^2
rút gọn biểu thức (a+b+c)^2 +(b+c-a)^2+(c+a-b)^2+(a+b-c)^2
Ta có
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]
=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2
=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)
Gấp!!
Rút gọn:
a) (a+b+c)^2-(a+b)^2-(a+c)^2-(b+c)^2
b) (a+b+c)^2+(a-b+c)^2+(a+b-c)^2+(-a+b+c)^2
a)(a+b+c)2-(a+b)2-(a+c)2-(b+c)2
=a2+b2+c2+2ab+2bc+2ca-a2-2ab-b2-a2-2ac-c2-b2-2bc-c2
=-a2-b2-c2
=-(a2+b2+c2)
b)(a+b+c)2-(a-b+c)2+(a+b-c)2+(-a+b+c)2
=a2+2ab+b2+2bc+c2+2ac-a2-b2-c2+2ab+2bc-2ac+a2+b2+c2+2ab-2bc-2ac+a2+b2+c2-2ab-2ac+2bc
=2a2+2b2+2c2+4ab-4bc-4ac
Rút Gọn phân thức sau: {a^3(b^2-c^2)+b^3(c^2-a^2)+c^3(a^2-b^2)}/{a^2(b-c)+b^2(c-a)+c^2(a-b)}
Rút gọn biểu thức:
(a+b+c)^2 + (b+c-a)^2 + (c+a-b)^2 + (a+b-c)^2
Rút gọn biểu thức:
(a+b+c)^2+(a-b-c)^2-(b-c-a)^2+c-a-b)^2