\(\dfrac{x+3}{x^{2^{ }}-1}\)+\(\dfrac{x+1}{x-x^2}\)
Giải các pt sau:
1)\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+1}=\dfrac{3}{2-x}\)
2)\(\dfrac{3x+1}{1-3x}+\dfrac{3+x}{3-x}=2\)
3)\(\dfrac{8x-2}{3}=1+\dfrac{5-2x}{4}\)
4)
\(\dfrac{x}{x+1}-\dfrac{2x+3}{x}=\dfrac{-3}{x+1}-\dfrac{3}{x}\)
5)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
6)\(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
giúp mình với cám ơn
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
1) \(\dfrac{1}{x^2+6x+9}+\dfrac{1}{6x-x^2+9}+\dfrac{x}{x^2-9}\) 2) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\) 3) \(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\)
Rút gọn
a)\(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{2x}{1-x^2}\)
b)\(\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}\)
c)\(\dfrac{2x^2-3x-9}{x^2-9}-\dfrac{x}{x+3}-\dfrac{x+3}{3-x}\)
d)\(\dfrac{x+3}{x-2}+\dfrac{x+2}{1-x}-\dfrac{4x-x^2}{x^2-3x+2}\)
giúp mik vs
cảm ơn <3
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
a)\(\dfrac{2}{x+2}-\dfrac{1}{x+3}+\dfrac{2x+5}{\left(x+2\right)\left(x+3\right)}\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x+5}+\dfrac{2x+6}{\left(x+5\right)\left(x+1\right)}\)
c)\(\dfrac{-6}{x^2-9}-\dfrac{1}{x+3}+\dfrac{3}{x-3}\)
d)\(\dfrac{x}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\)
Rút gọn các biểu thức (chú ý đến thứ tự thực hiện các phép tính)
a) \(\dfrac{x+1}{x+2}:\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\)
b) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
c) \(\dfrac{x+1}{x+2}.\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\)
d) \(\dfrac{x+1}{x+2}.\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
e) \(\dfrac{x+1}{x+2}:\dfrac{x+2}{x+3}.\dfrac{x+3}{x+1}\)
f) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}.\dfrac{x+3}{x+1}\right)\)
Rút gọn:
a) A= \(\dfrac{x+y}{x-y}-\dfrac{x}{x+y}+\dfrac{2y^2}{x^2-y^2}\)
b) B= \(\dfrac{x}{x-2}-\dfrac{10}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-1}{x+3}\)
c) C= \(\dfrac{1}{x-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{3}{x^3-1}\)
a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)
thực hiện phép tính
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\dfrac{15x-11}{x^2+2x-3}-\dfrac{3x-2}{x-1}-\dfrac{2x+3}{3+x}\)
\(\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\Leftrightarrow\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(ĐKXĐ:x\ne1\)
\(\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{(1+2x)\left(x-1\right)}{(x^2+x+1)\left(x-1\right)}-\dfrac{6\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\)
\(\Rightarrow4x^2-3x+5-\left(1+2x\right)\left(x-1\right)-6\left(x^2+x+1\right)\)
\(\Rightarrow4x^2-3x+5-\left(x-1+2x^2-2x\right)-6x^2-6x-6\)
\(\Rightarrow4x^2-3x+5-x+1-2x^2+2x-6x^2-6x-6\)
\(\Rightarrow-4x^2-8x\)
⇒-4x(x-4)
\(\dfrac{1}{x}\) - \(\dfrac{2}{x+1}\) = \(\dfrac{3}{x^2+x}\)
\(\dfrac{1}{x2-3}\) - \(\dfrac{3}{x\left(2x-3\right)}\) = \(\dfrac{5}{x}\)
\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
GIúp mình với ạ
a: ĐKXĐ: x<>0; x<>-1
PT =>x+1-2x=3
=>1-x=3
=>x=-2(nhận)
b: Sửa đề: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
=>x-3=5(2x-3)
=>10x-15=x-3
=>9x=12
=>x=4/3(nhận)
c: ĐKXĐ: x<>0; x<>2
PT =>x(x+2)-x+2=2
=>x^2+2x-x=0
=>x(x+1)=0
=>x=-1
Giải các phương trình
1, \(\dfrac{1}{x}-\dfrac{2}{x+1}=\dfrac{3}{x^2+x}\)
2, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
3, \(\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
1. \(\dfrac{1}{x}-\dfrac{2}{x+1}=\dfrac{3}{x^2+x}\)
\(\Leftrightarrow\dfrac{x+1}{x^2+x}-\dfrac{2x}{x^2+x}=\dfrac{3}{x^2+x}\)
\(\Rightarrow x+1-2x=3\)
\(\Leftrightarrow1-x=3\)
\(\Leftrightarrow-x=2\\ \Leftrightarrow x=-2\)
Vậy phương trình có nghiệm duy nhất \(x=-2\)
2. \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x^2+2x}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x-x+2=2\)
\(\Leftrightarrow x^2+x+2=2\\ \Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0 \)
\(\Leftrightarrow x=0\) hoặc x + 1= 0
⇔ x = 0 hoặc x= -1
Vậy phương trình có tập nghiệm là S={0;-1}
1) ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
Ta có: \(\dfrac{1}{x}-\dfrac{2}{x+1}=\dfrac{3}{x^2+x}\)
\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}-\dfrac{2x}{x\left(x+1\right)}=\dfrac{3}{x\left(x+1\right)}\)
Suy ra: \(x+1-2x=3\)
\(\Leftrightarrow-x+1=3\)
\(\Leftrightarrow-x=2\)
hay x=-2(thỏa ĐK)
Vậy: S={-2}
tìm x
\(\dfrac{-4}{x-1}\) \(\dfrac{3}{x-1}\) \(\dfrac{2x+1}{x-3}\) \(\dfrac{x+3}{x-2}\)
\(\dfrac{4x-1}{3-x}\) \(\dfrac{3x+3}{x-1}\) \(\dfrac{x-2}{x+3}\) \(\dfrac{2x}{x-2}\)
Không có dấu "=" hay như nào đâu giải tìm x được