Biết AB = DE
Tính \(\widehat{BCD}\)
Bài 1: cho hình vẽ biết AB// DE, \(\widehat{B}=115^o;\widehat{D}=135^o\) .Vẽ đường thẳng xy đi qua C và song song với AB.
a) chứng minh xy//DE
b) Tính số đo \(\widehat{BCD}\)
cho hình vẽ nào cơ
bạn phải đăng lên chứ
Tính các góc của hình thang BCD (AB // CD), biết rằng \(\widehat{A}=3\widehat{D},\widehat{B}-\widehat{C}=30^0\) ?
Câu hỏi của Phan Thị Hồng Đào - Toán lớp 8 - Học toán với OnlineMath
Từ \(\widehat{A}\) + \(\widehat{D}\) = 180o , \(\widehat{A}\) = \(3\widehat{D}\)
=> \(\widehat{A}\) = \(\left(180^o:4\right)\) . 3 = \(135^o\) ; \(\widehat{D}\) = \(45^o\)
Từ \(\widehat{B}\) + \(\widehat{C}\) \(=\) \(180^o\) và \(\widehat{B}\) \(-\) \(\widehat{C}\) \(=\) \(30^o\)
=> \(\widehat{C}\) \(=\) \(\dfrac{180^o-30^o}{2}\) \(=\) \(75^o\) , \(\widehat{B}\) = \(180^o\) \(-75^o=105^o\)
Vậy => \(\widehat{A}\) = \(135^o\) ,\(\widehat{B}\) = \(105^o\) , \(\widehat{C}\) = \(75^o\) , \(\widehat{D}\) = \(45^o\)
Hình thang ABCD có \(\widehat{D}=\widehat{A}=90^0\); AB = 30cm; CD = 18cm; BC = 20cm
a. Tính \(\widehat{ABC};\widehat{BCD}\)
b. Tính \(\widehat{DAC};\widehat{ADB}\)
c. Tính BD, AC
Trên (O) lấy thoe thứ tự 4 điểm A;B;C;D sao cho \(\widebat{AB}=100độ\)\(\widebat{BC}=30độ\)\(\widebat{CD}=60độ\). Biết AB cắt CD tại i, AC cắ BD tại i. Tính \(\widehat{BIC};\widehat{BIC};\widehat{ABC};\widehat{BCD}\)
Bài 1: Cho hình vẽ, biết \(n\perp AB\) tại B, \(\widehat{F_1}\)=\(120^o\).
a) Chứng tỏ m//n.
b) Tính \(\widehat{E_1}\).
c) Chứng tỏ \(m\perp AB\). Vì sao?
Cho tam giác ABC có \(\widehat{A}=90\)* và AB<AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của AB lấy E sao cho AE = Ac
a) Chứng minh BC = DE và BC vuông góc với DE
b) Biết \(4\widehat{B}=5\widehat{C}.Tính\widehat{AED}\)
Cho \(\widehat{xAy}\), trên tia Ax lấy điểm B sao cho AB=6cm. Trên tia đối của tia Ax lấy điểm D sao cho AD=4cm
a) Tính BD
b) Lấy C là một điểm trên tia Ay. Biết \(\widehat{BCD}=80^o,\widehat{BCA}=45^o\). Tính \(\widehat{ACD}\)
c) Biết AK=2 cm (K thuộc BD). Tính BK
bk=8 cm
=)))))))))))))))))
nha thầy cô giáo thanks
a. Vì điểm A nằm trên tia BD
mà AB = 6 cm
AD = 4 cm
=> BD = AB + AD
hay = 6 + 4
= 10
b. Ta có:\(\widehat{BCD}\)= \(\widehat{ACD}\) + \(\widehat{BCA}\) ( kề nhau)
=> \(\widehat{ACD}\) = \(\widehat{BCD}\) - \(\widehat{BCA}\)
hay = 80 0 - 450
= 350
c. ( mình lấy K thuộc tia AB nhưng AB vẫn nằm trên BD nha bạn )
Ta có: AB = BK + AK
=> BK = AB - AK
hay = 6 - 2
= 2
Trong Hình 95, đường thẳng a là đường trung trực của hai đoạn thẳng AB và CD. Chứng minh:
a) AB // CD;
b) \(\Delta MNC = \Delta MND;\)
c) \(\widehat {AMD} = \widehat {BMC}\);
d) \(AD = BC,\widehat A = \widehat B\);
e) \(\widehat {ADC} = \widehat {BCD}\).
a) Ta có: đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên \(a \bot AB;a \bot CD\).
Suy ra: AB // CD.
b) Đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên MN là đường trung trực của đoạn thẳng AB và CD. Suy ra: MD = MC.
Xét tam giác vuông MNC và tam giác vuông MND có: ND = NC; MD = MC.
Vậy \(\Delta MNC = \Delta MND\)(cạnh huyền – cạnh góc vuông).
c) \(\Delta MNC = \Delta MND\)nên \(\widehat {CMN} = \widehat {DMN}\).
Mà \(\widehat {AMN} = \widehat {BMN} = 90^\circ \Rightarrow \widehat {AMN} - \widehat {DMN} = \widehat {BMN} - \widehat {CMN}\).
Vậy \(\widehat {AMD} = \widehat {BMC}\).
d) Xét hai tam giác AMD và BMC có:
MA = MB;
\(\widehat {AMD} = \widehat {BMC}\);
MD = MC.
Vậy \(\Delta MAD = \Delta MBC\)(c.g.c). Suy ra: \(AD = BC,\widehat A = \widehat B\) (cặp cạnh và góc tương ứng).
e) \(\Delta MAD = \Delta MBC\) nên \(\widehat {ADM} = \widehat {BCM}\) (2 góc tương ứng).
\(\Delta MNC = \Delta MND\) nên \(\widehat {MCN} = \widehat {MDN}\) (2 góc tương ứng).
Vậy \(\widehat {ADM} + \widehat {MDN} = \widehat {BCM} + \widehat {MCN}\) hay \(\widehat {ADC} = \widehat {BCD}\).
Cho hình vẽ sau , biết ABC+BCD+CDE=360. Chứng tỏ AB//DE.
Giải thích các bước giải:
Kẻ Cz // AB
⇒ˆABC+ˆBCz=180°⇒ABC^+BCz^=180°(2 góc trrong cùng phía bù nhau)
Ta có: ˆABC+ˆBCD+ˆCDE=360°ABC^+BCD^+CDE^=360°
=ˆABC+ˆBCz+ˆzCD+ˆCDE=360°=ABC^+BCz^+zCD^+CDE^=360°
⇒180°+ˆzCD+ˆCDE=360°⇒180°+zCD^+CDE^=360°
⇒ˆzCD+ˆCDE=360°−180°=180°⇒zCD^+CDE^=360°-180°=180° mà 2 góc này nằm ở vị trí trong cùng phía
=> DE // Cz mà Cz // AB
=> AB // DE (đpcm)
1. Cho hình vẽ . Biết \(\widehat{A}\) = 135'( độ ) , \(\widehat{B}\) = 45'( độ ) , \(\widehat{D}\) = 55'( độ )
a) Đường thẳng a có song song với đường b không ? Vì sao ?
b) Tính số đo góc C\(_1\)
a) A + B = 180 độ
Mà A và B là cặp góc trong cùng phía
=> a//b
b) a//b
=> D = C (so le trong)
=> C = 55 độ