So sánh
B= 5555566666 và Q= 6666655555 . 5111111111
So sánh
B= 5555566666 và Q= 6666655555 . 51111
4444455555 x 5555566666 x 6666677777 = ?
đố các cậu bằng bao nhiêu
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
a) So sánh \(q.{S_n}\) và \(\left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\).
b) So sánh \({u_1} + q.{S_n}\) và \({S_n} + {u_1}.{q^n}\).
a) Ta có:
\(q.{S_n} = q.\left( {{u_1} + {u_2} + ... + {u_n}} \right) = {u_1}.q + {u_2}.q + ... + {u_n}.q = \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\)
b) Ta có:
\({u_1} + q.{S_n} = {u_1} + \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = \left( {{u_1} + {u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = {S_n} + {u_1}.{q^n}\)
a )So sánh \(\frac{41}{91}\)và \(\frac{411}{911}\)
b) so sánh \(\frac{113}{115}\)và \(\frac{93}{95}\)
c)So sánh \(\frac{13}{53}\)và \(\frac{11}{30}\)
a ) Ta có :
\(1-\frac{41}{91}=\frac{50}{91}\) \(=\frac{500}{910}\) ; \(1-\frac{411}{911}=\frac{500}{911}\)
Vì \(\frac{500}{910}>\frac{500}{911}\)nên \(\frac{41}{91}< \frac{411}{911}\)
b ) Ta có :
\(1-\frac{113}{115}=\frac{2}{115}\) ; \(1-\frac{93}{95}=\frac{2}{95}\)
Vì \(\frac{2}{115}< \frac{2}{95}\)nên \(\frac{113}{115}>\frac{93}{95}\).
c ) Quy đồng TS ta có :
\(\frac{13}{53}=\frac{143}{583}\) ; \(\frac{11}{30}=\frac{143}{390}\)
Vì \(\frac{143}{583}< \frac{143}{390}\)nên \(\frac{13}{53}< \frac{11}{30}\).
so sánh \(333^{444}\)và \(8^{111}\).\(111^{444}\)
b) so sánh \(333^{444}\)và \(444^{333}\)
333^444 = 111^444 . 3^444 = 111^444 . 81^111 > 8^111 . 111^444
=> 111^444 . 3^444 và 111^333 . 4^333
=>... :D
333^444 = 1332^111
444^333 = 1332^111
=> ...
a) So sánh 12580 và 25118
b) So sánh C và D , biết :
\(C=\left(\frac{-625}{81}\right)^{-29}\) và \(D=\left(\frac{-125}{27}\right)^{-39}\)
c) So sánh 1036 và 2117
a) Cho A = \(\frac{9^{18}+1}{9^{19}+1}\)và B = \(\frac{9^{19}+1}{9^{20}+1}\). So sánh A và B
b) Cho A = \(\frac{10^{2017}-1}{10^{2018}-1}\)và B = \(\frac{10^{2018}-1}{10^{2019}-1}\). So sánh A và B
a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)< \(\frac{9^{19}+1+8}{9^{20}+1+8}\)= \(\frac{9^{19}+9}{9^{20}+9}\)= \(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)= \(\frac{9^{18}+1}{9^{19}+1}\)= A
Vậy A > B
b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)> \(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)= \(\frac{10^{2018}-10}{10^{2019}-10}\)= \(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)= \(\frac{10^{2017}-1}{10^{2018}-1}\)= A
Vậy A < B.
NHỚ K CHO MK VỚI NHÉ !!!!!!!!
a)
\(9A=\frac{9^{19}+9}{9^{19}+1}=\frac{9^{19}+1+8}{9^{19}+1}=1+\frac{8}{9^{19}+1}\)
\(9A=\frac{9^{20}+9}{9^{20}+1}=\frac{9^{20}+1+8}{9^{20}+1}=1+\frac{8}{9^{20}+1}\)
ta thấy \(9^{19}+1< 9^{20}+1\Rightarrow\frac{8}{9^{19}+1}>\frac{8}{9^{20}+1}\)
\(\Rightarrow9A>9B\Rightarrow A>B\)
so sánh m và n biết:
A=\(\frac{3+6+9+...+3.m}{m}\)> B= \(\frac{3+6+9+...+3.n}{n}\)
Có A>B
So sánh m và n
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
( xét A và B so sánh với 1 nhé)
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1
10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1
=> 10A < 10B
=> A < B
Tk mk nha