tinh tong :
a, \(\dfrac{1}{n}\) -\(\dfrac{1}{n+a}\) voi a;n la so tu nhien va n khac 0
☹➞cac ban giup minh cau nay voi
☛ tinh tong
M = 1+\(\dfrac{1}{5}\)+\(\dfrac{3}{35}\)+...\(\dfrac{3}{9603}\)+\(\dfrac{3}{9999}\)
➜giup minh nhanh nhe minh dang can gap lam moi nguoi a
➞thank you cac ban ❕
\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{3}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)
Tinh tong S(n)=\(\dfrac{1}{2,5}+\dfrac{1}{5,8}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{3n+2-2}{2\left(3n+2\right)}=\dfrac{n}{2\left(3n+2\right)}\)
CAU 1:
A, Nhap vao so nguyen n ; Tinh tong S= 1+2+3+...+n
B, Nhap vao mot mang gom m so nguyen . Tinh tong cac phan tu cua mang do.
GIUP MINH VOI NHA MOI NGUOI ...
A:
uses crt;
var t,i,n:integer;
begin
clrscr;
write('Nhap n='); readln(n);
t:=0;
for i:=1 to n do
t:=t+i;
writeln(t);
readln;
end.
B:
uses crt;
var a:array[1..100]of integer;
i,n,t:integer;
begin
clrscr;
write('Nhap m='); readln(m);
for i:=1 to m do
begin
write('A[',i,']='); readln(a[i]);
end;
t:=0;
for i:=1 to m do
t:=t+a[i];
writeln(t);
readln;
end.
Tinh
a)M=\(\dfrac{2012-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{2012}{2020}}{\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}}\)
b)N=\(\dfrac{\dfrac{1}{1.300}+\dfrac{1}{2.301} +\dfrac{1}{3.302}+...+\dfrac{1}{101.400}}{\dfrac{1}{1.102}+\dfrac{1}{2.103}+\dfrac{1}{3.104}+...+\dfrac{1}{299.400}}\)
`a)` Xét tử số phân số M :
\(2012-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{2012}{2020}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{2012}{2020}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{2020}\\ =24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)\)
Ta được : \(M=\dfrac{24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)}{\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}}=24\)
`b)` Xét tử số phân số N :
\(\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+...+\dfrac{1}{101.400}\\ =\dfrac{1}{299}.\left(\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+...+\dfrac{299}{101.400}\right)\\ =\dfrac{1}{299}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
Xét mẫu số phân số N :
\(\dfrac{1}{1.102}+\dfrac{1}{2.103}+\dfrac{1}{3.104}+...+\dfrac{1}{299.400}\\ =\dfrac{1}{101}.\left(\dfrac{101}{1.102}+\dfrac{101}{2.103}+\dfrac{101}{3.104}+...+\dfrac{101}{299.400}\right)\\ =\dfrac{1}{101}.\left(1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+...+\dfrac{1}{299}-\dfrac{1}{400}\right)\)
\(=\dfrac{1}{101}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
Ta được: \(N=\dfrac{\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}{\dfrac{1}{101}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}\\ =\dfrac{\dfrac{1}{299}}{\dfrac{1}{101}}=\dfrac{101}{299}\)
Bai tap: Cho:
\(A=\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
a) Rut gon
b) Tinh gia tri cua A voi \(x=1\dfrac{1}{3}\)
Câu a : \(A=\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
\(=\dfrac{1}{\sqrt{x}}\times\dfrac{x+2\sqrt{x}+1}{\sqrt{x}-1}+1\)
\(=\dfrac{x+2\sqrt{x}+1}{x-\sqrt{x}}+1\)
\(=\dfrac{x+2\sqrt{x}+1}{x-\sqrt{x}}+\dfrac{x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{2x+\sqrt{x}+1}{x-\sqrt{x}}\)
Câu b : Thay \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) vào A ta được :
\(A=\dfrac{2.\dfrac{4}{3}+\sqrt{\dfrac{4}{3}}+1}{\dfrac{4}{3}-\sqrt{\dfrac{4}{3}}}=\dfrac{\dfrac{8}{3}+\dfrac{2\sqrt{3}}{3}+\dfrac{3}{3}}{\dfrac{4}{3}-\dfrac{2\sqrt{3}}{3}}=\dfrac{\dfrac{11+2\sqrt{3}}{3}}{\dfrac{4-2\sqrt{3}}{3}}=\dfrac{11+2\sqrt{3}}{4-2\sqrt{3}}\)
Chúc bạn học tốt
\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
a, rut gon A
b, tinh A voi \(4-2\sqrt{3}\)
\(ĐKXĐ:x\ge0,x\ne1\)
= \(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
= \(\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) (1)
b/ Ta có: \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
Thay \(x=\left(\sqrt{3}-1\right)^2\) vào (1) ta được:
\(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)= \(\dfrac{\sqrt{3}-1}{4-2\sqrt{3}+\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{4-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}-1\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}=\dfrac{3\sqrt{3}-1}{13}\)
Vậy giá trị của A khi \(x=4-2\sqrt{3}\) là \(\dfrac{3\sqrt{3}-1}{13}\)
\(p=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
=\(\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
=\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
học tốt nhé anh trai
Cho a, b, c là độ dài 3 cạnh tam giác. CMR:
1, \(\dfrac{1}{\left(a+b-c\right)^n}+\dfrac{1}{\left(a-b+c\right)^n}+\dfrac{1}{\left(b+c-a\right)^n}\ge\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}\)
2, \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}\ge4^n\left[\dfrac{1}{\left(2a+b+c\right)^n}+\dfrac{1}{\left(a+2b+c\right)^n}+\dfrac{1}{\left(a+b+2c\right)^n}\right]\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\). Chứng minh \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\)với n lẻ.
Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)
\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)
\(\Leftrightarrow \frac{(a+b)[c(a+b+c)+ab]}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)
Xét : \(A=\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}-\frac{1}{a^n+b^n+c^n}\)
\(A=\frac{a^n+b^n}{a^nb^n}+\frac{a^n+b^n}{c^n(a^n+b^n+c^n)}\)
\(A=(a^n+b^n)\left(\frac{1}{a^nb^n}+\frac{1}{c^n(a^n+b^n+c^n)}\right)\)
\(A=\frac{(a^n+b^n)[c^n(a^n+b^n+c^n)+a^nb^n]}{a^nb^nc^n(a^n+b^n+c^n)}\)
\(A=\frac{(a^n+b^n)(b^n+c^n)(c^n+a^n)}{a^nb^nc^n(a^n+b^n+c^n)}\)
Vì $n$ lẻ nên :
\((a^n+b^n)(b^n+c^n)(c^n+a^n)=(a+b)(b+c)(c+a)(a^{n-1}+....+b^{n-1})(b^{n-1}+..+c^{n-1})(c^{n-1}+...+a^{n-1})\)
\(=0\) do \((a+b)(b+c)(c+a)=0\)
Do đó: \(A=0\Leftrightarrow \frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
hãy mô tả thuật toán để tinh tổng sau
A=\(\dfrac{1}{1.3}\)+\(\dfrac{1}{2.4}\)+\(\dfrac{1}{3.5}\)+...+\(\dfrac{1}{n\left(n+2\right)}\)
Mô tả tính tổng:
-B1:A\(\leftarrow0\),i\(\leftarrow1.\)
-B2:A\(\leftarrow\dfrac{1}{i\times\left(i+2\right)}\)
-B3:\(i\leftarrow i+1\)
-B4:Nếu \(i\le n\),quay lại B2
-B5:Ghi kết quảA và kết thúc thuật toán.
Giải thuật tính tổng trên là :
- Bước 1:Nhập số n
- Bước 2:S<-0; i<-0;
- Bước 3:i<-i+1;
- Bước 4:Nếu i <= n thì S:=S+1/(i*(i+2)) nghĩa là công vào S = S+1/(i*(i+2)) và quay lại
- Bước 5.Ngược lại thông báo kết quả và kết thúc thuật toán.
program bai1;
var n,s,i:longint;
begin
write('N= ');realn(n);
s:=0;
for i:=1to n do
s:=s+1/n*(n+2);
write('S= ',s);
readln
end.