Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Văn Anh Kiệt
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Akai Haruma
7 tháng 7 2021 lúc 23:16

Lời giải:

$x=\frac{\sqrt{5}-1}{2}$

$2x=\sqrt{5}-1$

$2x+1=\sqrt{5}\Rightarrow (2x+1)^2=5$

$\Leftrightarrow 4x^2+4x-4=0$

$\Leftrightarrow x^2+x-1=0$

Khi đó:
\((4x^5+4x^4-5x^3+2x-2)^2\)

\(=[4x^3(x^2+x-1)-x^3+2x-2]^2\)

\(=(-x^3+2x-2)^2=[-x(x^2+x+1)+(x^2+x-1)-1]^2\)

\(=(-1)^2=1\)

Trương Trọng Tiến
Xem chi tiết
Gae Song
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
cogaii tramtinh :>
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 13:32

a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2

b: =x^3+3x^2-2x-3x^2-9x+6

=x^3-11x+6

c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)

\(=2x^2-3x-1+\dfrac{5}{2x+1}\)

HT.Phong (9A5)
1 tháng 7 2023 lúc 13:50

a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)

\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)

\(=2x^5-16x^3-2x^5-x^3\)

\(=-17x^3\)

b) \(\left(x+3\right)\left(x^2+3x-2\right)\)

\(=x^3+3x^2-2x+3x^2+9x-6\)

\(=x^3+6x^2+7x-6\)

c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)

\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)

\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)

Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Nguyễn Phương Thùy
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 9 2021 lúc 22:00

a.

\(y'=-\dfrac{3}{2}x^3+\dfrac{6}{5}x^2-x+5\)

b.

\(y'=\dfrac{\left(x^2+4x+5\right)'}{2\sqrt{x^2+4x+5}}=\dfrac{2x+4}{2\sqrt{x^2+4x+5}}=\dfrac{x+2}{\sqrt{x^2+4x+5}}\)

c.

\(y=\left(3x-2\right)^{\dfrac{1}{3}}\Rightarrow y'=\dfrac{1}{3}\left(3x-2\right)^{-\dfrac{2}{3}}=\dfrac{1}{3\sqrt[3]{\left(3x-2\right)^2}}\)

d.

\(y'=2\sqrt{x+2}+\dfrac{2x-1}{2\sqrt{x+2}}=\dfrac{6x+7}{2\sqrt{x+2}}\)

e.

\(y'=3sin^2\left(\dfrac{\pi}{3}-5x\right).\left[sin\left(\dfrac{\pi}{3}-5x\right)\right]'=-15sin^2\left(\dfrac{\pi}{3}-5x\right).cos\left(\dfrac{\pi}{3}-5x\right)\)

g.

\(y'=4cot^3\left(\dfrac{\pi}{6}-3x\right)\left[cot\left(\dfrac{\pi}{3}-3x\right)\right]'=12cot^3\left(\dfrac{\pi}{6}-3x\right).\dfrac{1}{sin^2\left(\dfrac{\pi}{3}-3x\right)}\)