Ta có: B = \(\left(4x^5+4x^4-5x^3+2x-2\right)^2+2017\)
Đặt D = \(4x^5+4x^4-5x^3+2x=x\left(4x^4+4x^3-5x^2+2\right)\)
Thay \(x=\dfrac{\sqrt{5}-1}{2}\) vào D ta được:
D =
\(\dfrac{\sqrt{5}-1}{2}.\left[4\left(\dfrac{\sqrt{5}-1}{2}\right)^4+4\left(\dfrac{\sqrt{5}-1}{2}\right)^3-5\left(\dfrac{\sqrt{5}-1}{2}\right)^2+2\right]\)
D=\(\dfrac{\sqrt{5}-1}{2}\left[\dfrac{4\left(\sqrt{5}-1\right)^4}{16}+\dfrac{4\left(\sqrt{5}-1\right)^3}{8}-\dfrac{5\left(\sqrt{5}-1\right)^2}{4}+2\right]\)
D = \(\dfrac{\sqrt{5}-1}{2}\left[\dfrac{\left(\sqrt{5}-1\right)^4}{4}+\dfrac{2\left(\sqrt{5}-1\right)^3}{4}-\dfrac{5\left(\sqrt{5}-1\right)^2}{4}+\dfrac{8}{4}\right]\)
D =
\(\dfrac{\sqrt{5}-1}{2}.\left(\dfrac{25-20\sqrt{5}+30-4\sqrt{5}+1+10\sqrt{5}-30+6\sqrt{5}-2-25+10\sqrt{5}-5+8}{4}\right)\)
D = \(\dfrac{\sqrt{5}-1}{2}\left(\dfrac{2\left(\sqrt{5}+1\right)}{4}\right)\) = \(\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}{4}\) = \(1\)
=> B = \(\left(1-2\right)^2+2017\) = 2018
P/s: Haha!Đây là phương an toàn mà dễ lm nhất!~
có: \(x=\dfrac{\sqrt{5}-1}{2}\Leftrightarrow2x+1=\sqrt{5}\Leftrightarrow4x^2+4x+1=5\Leftrightarrow4x^2+4x-4=0\Leftrightarrow x^2+x-1=0\)\(B=\left[4x^3\left(x^2+x-1\right)-x\left(x^2+x-1\right)+\left(x^2+x-1\right)-1\right]^2+2017\)\(=1+2017=2018\)