Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Hồ Thị Tâm
19 tháng 3 2021 lúc 21:28

a, hệ\(\Leftrightarrow\)$\left \{ {{x>\frac{1}{2} } \atop {x<m+2}} \right.$

để hệ có nghiệm ⇒ m+2< $\frac{1}{2}$ ⇒ m<$\frac{-3}{2}$

nguyen ngoc son
Xem chi tiết
Rin Huỳnh
27 tháng 12 2021 lúc 12:04

\(a) \begin{cases}x=y+4\\2x+3=0\end{cases}\Leftrightarrow\begin{cases}x = y + 4\\2x = -3\end{cases}\Leftrightarrow\begin{cases}\dfrac{-3}{2} = y + 4\\x = \dfrac{-3}{2}\end{cases}\Leftrightarrow\begin{cases}y = \dfrac{-11}{2}\\x = \dfrac{-3}{2}\end{cases}\\b) \begin{cases}2x + y = 7\\3y - x = 7\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\6y - 2x = 14\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\7y = 21\end{cases}\Leftrightarrow\begin{cases}2x + 3 = 7\\y = 3\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}\\ c) \begin{cases} 5x + y = 3 \\ -x - \dfrac{1}{5}y=\dfrac{-3}{5} \end{cases} \Leftrightarrow \begin{cases} 5x + y = 3 \\ 5x + y = 3 \end{cases} (luôn\ đúng) \Leftrightarrow Phương\ trình\ vô\ số\ nghiệm \\d) \begin{cases} 3x - 5y = -18 \\ x - 5 = 2y \end{cases} \Leftrightarrow \begin{cases} 3x - 5y = -18 \\ 3x - 6y = 15 \end{cases} \Leftrightarrow \begin{cases} x - 5 = 2.(-33)\\ y = -13 \end{cases} \Leftrightarrow \begin{cases}x = -61\\y=-33 \end{cases} \)

Bé Poro Kawaii
Xem chi tiết
Lê Thị Thục Hiền
16 tháng 5 2021 lúc 12:20

\(x^2-5x+1=m-2\sqrt{6+5x-x^2}\) (đk: \(x\in\left[-1;6\right]\))

\(\Leftrightarrow7-\left(6+5x-x^2\right)=m-2\sqrt{6+5x-x^2}\)

\(Đặt \) \(a=\sqrt{6+5x-x^2}\left(a\ge0\right)\)

(bình phương cái vừa đặt lên, tìm được \(\Delta_x=49-4a^2\) nên với mỗi \(a\in\left[0;\dfrac{7}{2}\right]\backslash\left\{\dfrac{7}{2}\right\}\) sẽ có 2 nghiệm x phân biệt)

pttt: \(7-a^2=m-2a\)

\(\Leftrightarrow a^2-2a-7=-m\) (*)

BBT \(f\left(x\right)=a^2-2a-7\) với \(a\in\left[0;\dfrac{7}{2}\right]\backslash\left\{\dfrac{7}{2}\right\}\)

 

a 0 1 7/2 f(a) -8 -7 7/4 -m Số nghiệm của pt (*) là số giao điểm của đồ thị f(a) và đường thẳng d=-m

nên để pt ban đầu có 2 nghiệm x phân biệt <=>pt (*) có 1 nghiệm <=> \(\left[{}\begin{matrix}-m=-8\\-7< -m< \dfrac{7}{4}\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=8\\\dfrac{7}{4}< m< 7\end{matrix}\right.\)
Ý A

 

DUTREND123456789
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2023 lúc 5:03

a: \(\left\{{}\begin{matrix}\dfrac{-5x+2y}{3}+5=\dfrac{y+27}{4}-2x\\\dfrac{x+1}{3}+y=\dfrac{6y-5x}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4\left(-5x+2y\right)+60=3\left(y+27\right)-24x\\7\left(x+1\right)+21y=3\left(6y-5x\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-20x+8y+60=3y+81-24x\\7x+7+21y=18y-15x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-20x+8y-3y+24x=21\\7x+21y-18y+15x=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+5y=21\\22x+3y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+15y=63\\110x+15y=-35\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-98x=98\\4x+5y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\5y=21-4x=21+4=25\end{matrix}\right.\)

=>x=-1 và y=5

b: \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(xy+3x+2y+6\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(xy-2x-2y+4\right)=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}xy+3x+2y+6-xy=100\\xy-\left(xy-2x-2y+4\right)=64\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+2y=94\\2x+2y=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=34\\2x+2y=60\end{matrix}\right.\)

=>x=34 và y=-4

c: \(\left\{{}\begin{matrix}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{matrix}\right.\)

\(\left\{{}\begin{matrix}xy-x+20y-20=xy\\xy+x-10y-10=xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x+20y=20\\x-10y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10y=30\\x-10y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3\\x=10y+10=30+10=40\end{matrix}\right.\)

d: ĐKXĐ: \(\left\{{}\begin{matrix}x< >-2y\\x< >-\dfrac{y}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{2x+y}=3\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{x+2y}+\dfrac{2}{2x+y}=6\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2x+y}=5\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y=1\\\dfrac{4}{x+2y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y=1\\2x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=1-2y=1-\dfrac{2}{3}=\dfrac{1}{3}\end{matrix}\right.\)(nhận)

e: ĐKXĐ: x<>-1 và y<>-4

\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4\\2-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\\\dfrac{2}{x+1}+\dfrac{5}{y+4}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{6}{x+1}+\dfrac{4}{y+4}=-2\\\dfrac{6}{x+1}+\dfrac{15}{y+4}=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{y+4}=19\\\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y+4=-\dfrac{11}{19}\\\dfrac{3}{x+1}+2:\dfrac{-11}{19}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{11}{19}-4=-\dfrac{87}{19}\\\dfrac{3}{x+1}=-1-2:\dfrac{-11}{19}=\dfrac{27}{11}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x+1=\dfrac{11}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{9}\\y=-\dfrac{87}{19}\end{matrix}\right.\left(nhận\right)\)

Thien Nguyen
Xem chi tiết
Akai Haruma
29 tháng 4 2021 lúc 23:55

Lời giải:

Phương hướng giải là bạn sử dụng phương pháp thế, biểu diễn $x$ theo $y$ qua 1 trong 2 PT, sau đó thế vô PT còn lại giải PT 1 ẩn $y$
a) \(\left\{\begin{matrix} x-6y=17\\ 5x+y=23\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=17+6y\\ 5x+y=23\end{matrix}\right.\)

\(\Rightarrow 5(17+6y)+y=23\)

\(\Leftrightarrow 31y=-62\Leftrightarrow y=-2\)

$x=17+6y=17+6(-2)=5$

Vậy $(x,y)=(5,-2)$

Các phần còn lại bạn giải tương tự

b) $(x,y)=(\frac{1}{4}, 0)$

c) $(x,y)=(3, 4)$

d) $(x,y)=(\frac{79}{21}, \frac{44}{21})$

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
4 tháng 5 2017 lúc 17:04

a) \(\left\{{}\begin{matrix}5x+3y=-7\\2x-4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x-2y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5.\left(3+2y\right)+3y=-7\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13y=-22\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=3+2.\dfrac{-22}{13}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\).



Bùi Thị Vân
4 tháng 5 2017 lúc 17:07

b)\(\left\{{}\begin{matrix}7x+14y=17\\2x+4y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x+28y=34\\14x+28y=35\end{matrix}\right.\) (vô nghiệm)
Vậy hệ phương trình vô nghiệm.

Bùi Thị Vân
4 tháng 5 2017 lúc 17:24

c) \(\left\{{}\begin{matrix}\dfrac{2}{5}x+\dfrac{3}{7}y=\dfrac{1}{3}\\\dfrac{5}{3}x-\dfrac{5}{7}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{5}x+\dfrac{3}{7}y=\dfrac{1}{3}\\x-\dfrac{3}{7}y=\dfrac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{5}x+\dfrac{3}{7}y=\dfrac{1}{3}\\x=\dfrac{3}{7}y+\dfrac{2}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{5}.\left(\dfrac{3}{7}y+\dfrac{2}{5}\right)+\dfrac{3}{7}y=\dfrac{1}{3}\\x=\dfrac{3}{7}y+\dfrac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{5}y=\dfrac{13}{75}\\x=\dfrac{3}{7}y+\dfrac{2}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{13}{45}\\x=\dfrac{11}{21}\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=\dfrac{13}{45}\\x=\dfrac{11}{21}\end{matrix}\right.\).

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2023 lúc 8:46

a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4

=>-2x+y=4 và 20x+3y=2

=>x=-5/13; y=42/13

b: =>4x+2|y|=8 và 4x-3y=1

=>2|y|-3y=7 và 4x-3y=1

TH1: y>=0

=>2y-3y=7 và 4x-3y=1

=>-y=7 và 4x-3y=1

=>y=-7(loại)

TH2: y<0

=>-2y-3y=7 và 4x-3y=1

=>y=-7/5; 4x=1+3y=1-21/5=-16/5

=>x=-4/5; y=-7/5

yến hải
Xem chi tiết
Nguyễn Ngọc Lộc
19 tháng 3 2020 lúc 14:28

a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3\left(4y-3\right)+2y=-2\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}12y-9+2y=-2\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14y=7\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{1}{2}\\x=\frac{4.1}{2}-3=-1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-1;\frac{1}{2}\right)\)

b, Ta có : \(\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\5\left(11-2y\right)-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\55-10y-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\-13y=-52\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2.4=3\\y=4\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)

c, Ta có : \(\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}30x-27y=3\\30x+42y=72\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10x-9y=1\\-69y=-69\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10x-9=1\\y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(1;1\right)\)

d, Ta có : \(\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2x\\x+2-2x=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2x\\2-x=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2.0=3\\x=0\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(0;3\right)\)

e, Ta có : \(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\2\left(2-y\right)-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\4-2y-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\-5y=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2+1=3\\y=-1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-1\right)\)

f, Ta có : \(\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\5\left(11+2y\right)+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\55+10y+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\13y=-52\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-4\right)\)

g, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=9-5=4\\x=3\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)

h, Ta có : \(\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+3\left(3x+8\right)=-7\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+9x+24=-7\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14x=-31\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{31}{14}\\y=3.\left(-\frac{31}{14}\right)+8=\frac{19}{14}\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-\frac{31}{14};\frac{19}{14}\right)\)

Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
19 tháng 3 2020 lúc 13:26

...????

Khách vãng lai đã xóa
anh phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 20:26

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=-3\\\dfrac{3}{x}-\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y}=-10\\\dfrac{1}{x}+\dfrac{1}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)