Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tuấn Kiệt
Xem chi tiết
vũ tiền châu
22 tháng 2 2018 lúc 18:37

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

trần thành đạt
22 tháng 2 2018 lúc 15:42

bạn tìm ra dấu= xảy ra khi nào

nguyên tuấn siêu minh
22 tháng 2 2018 lúc 18:48

rất tiếc sai rồi :)) 

Nguyễn Bùi Đại Hiệp
Xem chi tiết
Akai Haruma
12 tháng 5 2020 lúc 22:29

Bạn xem lại đề. Với từng này điều kiện thì không tìm được $M_{\min}$

Trần Thùy Linh
12 tháng 5 2020 lúc 23:00

Ta có \(2a^4+\left(a^4+1\right)\ge2a^4+2a^2\ge4a^3\)

\(\Rightarrow3a^4+1\ge4a^3\)

\(\Rightarrow M\ge\frac{4\left(a^3+b^3\right)+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b\right)^3+c^3}{\left(a+b+c\right)^3}\)\(=\left(1-\frac{c}{a+b+c}\right)^3+\frac{c^3}{\left(a+b+c\right)^3}\)

Đặt \(\frac{c}{a+b+c}=t\) (đề nhầm không ?)

\(\Rightarrow M\ge\left(1-t\right)^3+t^3\)

Edogawa Conan
Xem chi tiết
missing you =
4 tháng 7 2021 lúc 18:36

\(S=\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)

có \(1+\dfrac{2a}{3b}\ge2\sqrt{\dfrac{2a}{3b}}\)(BDT AM-GM)

\(=>1+\dfrac{2b}{3c}\ge2\sqrt{\dfrac{2b}{3c}}\)

\(=>1+\dfrac{2c}{3d}\ge2\sqrt{\dfrac{2c}{3d}}\)

\(=>1+\dfrac{2d}{3a}\ge2\sqrt{\dfrac{2d}{3a}}\)

\(=>S\ge16\sqrt{\dfrac{2a.2b.2c.2d}{3a.3b.3c.3d}}=16\sqrt{\dfrac{16abcd}{81abcd}}=16\sqrt{\dfrac{16}{81}}=\dfrac{64}{9}\)

Xem chi tiết
Nam Khánh 2k
Xem chi tiết
Nguyễn Ngọc Huy Toàn
25 tháng 2 2022 lúc 20:11

b.\(ĐK:x;y\in Z^+;x;y\ne0\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)

\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)

\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)

\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)

\(\Leftrightarrow x=\dfrac{5y}{y-5}\)

\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )

Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

TH1: 

\(y-5=1\) 

\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm )   ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )

Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:

\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\)  \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\)  \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)

Lê Thế Minh
Xem chi tiết
Kiệt Nguyễn
26 tháng 4 2020 lúc 15:56

Thật sự á, cái đề làm t đau đầu từ sáng giờ, nhờ cmt của bạn Arima Kousei t mới làm đc!

Đề đúng là tìm min của \(M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\)

Áp dụng BĐT Cô - si cho 4 số không âm, ta được:

\(3a^4+1=a^4+a^4+a^4+1\ge4\sqrt[4]{a^{12}}=4a^3\)

Tương tự ta có: \(3b^4+1\ge4b^3\)

\(\Rightarrow M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\)

Ta có BĐT phụ \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)(*)

Thật vậy (*)\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

\(\Rightarrow M\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b\right)^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^3}{4\left(a+b+c\right)^3}=\frac{1}{4}\)

Đẳng thức xảy ra khi a = b = 1; c = 2

P/S: Sai nữa thì chịu ,mình đã cố gắng hết sức

Khách vãng lai đã xóa
Arima Kousei
26 tháng 4 2020 lúc 15:28

Đề sai phải là : (a+b+c)^3 

Khách vãng lai đã xóa
Nguyễn Mary
Xem chi tiết
Akai Haruma
10 tháng 7 2018 lúc 21:57

Bài 1:

\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)

\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT Cô-si:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

Áp dụng BĐT SVac-xơ kết hợp với Cô-si:

\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Cộng các BĐT trên :

\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)

Akai Haruma
10 tháng 7 2018 lúc 22:02

Bài 2:

Áp dụng BĐT Svac-xơ:

\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)

\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)

Cộng theo vế và rút gọn :

\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Akai Haruma
10 tháng 7 2018 lúc 22:06

Bài 3:

Áp dụng BĐT Svacxo:

\(\frac{1}{a+b}+\frac{1}{c+d}\geq \frac{4}{a+b+c+d}\)

\(\Rightarrow \frac{a+c}{a+b}+\frac{a+c}{c+d}\geq \frac{4(a+c)}{a+b+c+d}(1)\)

\(\frac{1}{b+c}+\frac{1}{d+a}\geq \frac{4}{b+c+d+a}\)

\(\Rightarrow \frac{b+d}{b+c}+\frac{b+d}{d+a}\geq \frac{4(b+d)}{a+b+c+d}(2)\)

Từ \((1);(2)\Rightarrow \frac{a+c}{a+b}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+\frac{d+b}{d+a}\geq \frac{4(a+c+b+d)}{a+b+c+d}=4\)

Dấu bằng xảy ra khi \(a=b=c=d\)

nguyen duc khoa
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Nguyễn Huy Thắng
30 tháng 1 2018 lúc 17:25

\(ab;bc;ca \rightarrow x;yz\)\(\Rightarrow gt\Leftrightarrow x^3+y^3+z^3=3xyz\)

Can you finish it ?