Cho a, b, c, d > 0. Chứng minh rằng:
1.
\(\dfrac{a}{\sqrt{a^2+8bc}}\)+ \(\dfrac{b}{\sqrt{b^2+8ac}}\)+ \(\dfrac{c}{\sqrt{c^2+8ab}}\) ≥ 1
2.
\(\dfrac{a}{b+2c+3d}\)+\(\dfrac{b}{c+2d+3a}\)+\(\dfrac{c}{d+2a+3b}\)+ \(\dfrac{d}{a+2b+3c}\) ≥ \(\dfrac{2}{3}\)
3.
\(\dfrac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}\) + \(\dfrac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}\) + \(\dfrac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}\) + \(\dfrac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\) ≥ \(\dfrac{a+b+c+d}{4}\)
Bất đẳng thức BuNyaKovSky ( BCS )
giải giúp mấy bài sau nha mn
thanks nhiều
1. Tìm nghiệm nguyên của pt:
a) \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
b) \(12x^2+6xy+3y^2=28\left(x+y\right)\)
2. Cho x,y,z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\)
C/m: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}=< 1\)
3. Cho a,b,c>0 và abc=1
C/m: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}>=\dfrac{3}{2}\)
4. Cho x,y>0 và x + y >= 2
Tìm GTNN của biểu thức \(A=4\left(x+y\right)+\dfrac{1}{x+1}+\dfrac{1}{y+1}+1\)
Chứng minh các bất đẳng thức sau :
1. a3 - 3a +4 \(\ge\) b3 - 3b ( a\(\ge\)b)
2. \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\) ( với a+b>0 )
3. \(\dfrac{a^3+b^3+c^3}{a+b+c}\ge\dfrac{3abc}{a+b+c}\) ( với a+b+c\(\ne\)0 )
Cho a,b,c dương tm \(a+b\le c\). Tìm GTNN của \(P=\left(a^4+b^4+c^4\right)\left(\dfrac{1}{4a^4}+\dfrac{1}{4b^4}+\dfrac{1}{c^4}\right)\)
Cho a,b,c > 0 thỏa mãn 4a3 + 3b2 + 2c = 4.
Tìm GTNN của biểu thức P = 3a4 + 2b3 + c2
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
Cho 3 số a,b,c thỏa mãn \(0\le a\le b\le c\le1\) Tìm GTLN và GTNN của biểu thức \(B=\left(a+b+c+3\right)\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
Cho \(a,b,c\ge0\) t/m: \(\left\{{}\begin{matrix}c\left(a+b\right)>0\\\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\le6\end{matrix}\right.\)
Tìm Min: \(H=\left(a+b\right)\sqrt{1+\dfrac{3}{a+b^4}}+\sqrt{c^2+\dfrac{3}{c^2}}+\dfrac{\left(b+6\right)^2}{9\left(a+b+c\right)}\)
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)