Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Linh
Xem chi tiết
Kinomoto Sakura
31 tháng 7 2021 lúc 13:53

Gọi a là ƯCLN(2n+1;3n+2)

Ta có 2n+1 chia hết cho a nên 3(2n+1) cũng chia hết cho a hay 6n+3 cũng chia hết cho a

Ta có 3n+2 chia hết cho a nên 2(3n+2) cũng chia hết cho a hay 6n+4 cũng chia hết cho a

Ta suy ra [(6n+4)-(6n+3)] chia hết cho a

                  (6n+4-6n-3) chia hết cho a

                   1 chia hết cho a

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 13:54

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

hay \(\dfrac{2n+1}{3n+2}\) là phân số tối giản

Nam Dốt Toán
Xem chi tiết
Quỳnh Anh Phạm
11 tháng 4 2023 lúc 20:34

gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:

2n+1 chia hết cho d=>6n+3 chia hết cho d

3n+2 chia hết cho d=>6n+4 chia hết cho d

=>1 chia hết cho d=>d=1

vậy ...

Võ Ngọc Phương
11 tháng 4 2023 lúc 20:41

Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)

Nên 2n+1⁝ d và 3n+2 ⁝ d

⇒ 3(2n+1) ⁝ d và 2(3n+2)

⇒ 6n+3 ⁝ d và 6n+4 ⁝ d

⇒ ( 6n+4 - 6n+3) ⁝ d

⇒ 1⁝ d

⇒ d= 1

Vậy:..

Chúc bạn học tốt

Nguyễn Tuấn Phát
11 tháng 4 2023 lúc 20:43

ssss

Vi pe
Xem chi tiết
Không Thể Nói
27 tháng 4 2017 lúc 19:22

Ta gọi d là UCLN( 2n + 1 ; 3n + 2 )

\(\Rightarrow2n+1⋮d\)

\(\Rightarrow3n+2⋮d\)

\(\Rightarrow3.\left(2n+1\right)⋮d\)

\(\Rightarrow2.\left(3n+2\right)⋮d\)

Hay \(6n+3⋮d\)

\(6n+4⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d=1hoặc-1\)\(\Rightarrow dpcm\)

Nhữ Đình Tú
27 tháng 4 2017 lúc 19:22

Gọi ƯCLN(2n+1,3n+2) là d

Ta có : 2n+1 \(⋮\) d và 3n+2 \(⋮\) d

=> 3.(2n+1) \(⋮\) d và 2(3n+2) \(⋮\) d

=> 6n+3 \(⋮\) d và 6n+4 \(⋮\) d

=>(6n+4)-(6n+3) \(⋮\) d

=> 1 \(⋮\) d ( bạn tự làm phần trung gian nhé ^^)

=> d \(\inƯ\left(1\right)\)

=> d \(\in\left\{1;-1\right\}\)

Vì d lớn nhất => d =1 => ƯCLN(2n+1,3n+2) =1

=> 2n+1 và 3n+2 nguyên tố cùng nhau

=> ĐPCM

Tick nha ^^

thám tử
27 tháng 4 2017 lúc 19:25

gọi UCLN(2n+ 1; 3n + 2 ) là d

=> 2n + 1 chia hết cho d => 3.(2n + 1) chia hết cho d

3n + 2 chia hết cho d => 2.(3n+ 2) chia hết cho d

=> 2.(3n + 2) - 3.(2n + 1) chia hết cho d

6n + 4 - 6n + 3

=> 1 chia hết cho d => d= 1

vậy UCLN(2n+1;3n+2) = 1 => p/s \(\dfrac{2n+1}{3n+2}\) là p/s tối giản

nam phuong
Xem chi tiết
Night___
6 tháng 1 2022 lúc 14:41

Giải:

Gọi  ƯCLN (2n+3;3n+5)=d

Ta có:

2n+3:d =>3. (2n+3):d

3n+5:d=> 2. (3n+5):d

=> [3. (2n+3) - 2.(3n+5)]:d

=>(6n+9 - 6n-10): d

=> -1:d

=> d={1,-1}

Tick mình nha

HỒ THỊ TÚ TRINH
Xem chi tiết
dinhkhachoang
1 tháng 4 2016 lúc 10:35

GỌI Đ LÀ ƯC (2N+1/3N+2)

=>2N+2 CHIA HẾT CHO Đ=>3(2N+3) CHIA HẾT CHO Đ

=>3N+2CHIA HẾT CHO Đ=>2(3N+4) CHIA HẾT CHO DD

=>(6N+3)-(6N+4) CHIA HẾT CHO Đ

=>1 CHIA HẾT CHO Đ

=>Đ=1

=>2N+1/3N+2 LÀ P/S TỐI GIẢN

ngo thuy linh
1 tháng 4 2016 lúc 9:31

thiếu đề bài nha

sao mình giải được

nguyen thu trang
Xem chi tiết
Nguyễn Hằng
12 tháng 7 2017 lúc 12:33

Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi n

 Mashiro Shiina
12 tháng 7 2017 lúc 13:02

Gọi \(d\)\(UCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow6n+4-6n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\rightarrowđpcm\)

Im Yoona
Xem chi tiết
Hồ Thu Giang
12 tháng 7 2015 lúc 15:37

Gọi ƯCLN(2n+1; 3n+2) là d. Ta có:

2n+1 chia hết cho d => 6n+3 chia hết cho d

3n+2 chia hết cho d => 6n+4 chia hết cho d

=> 6n+4-(6n+3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(2n+3; 3n+2) = 1

=>\(\frac{2n+1}{3n+2}\)là phân số tối giản (đpcm)

Sarah
20 tháng 7 2016 lúc 19:26

Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)

=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n + 1; 3n + 2) = 1

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

Xem chi tiết
cà thái thành
30 tháng 4 2019 lúc 15:16

https://h.vn/hoi-dap/question/39186.html

Công chúa đáng yêu
30 tháng 4 2019 lúc 15:19

Gọi d là ƯCLN ( 2n + 1 ; 3n + 2 )( d thuộc N* )

=> 2n + 1 chia hết cho d ; 3n + 2 chia hết cho d  

=> 3( 2n + 1 ) chia hết cho d ; 2( 3n + 2 ) chia hết cho d

=> 6n + 3 chia hết cho d ; 6n + 4 chia hết cho d 

=> ( 6n + 4 ) - ( 6n + 3 ) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d 

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN( 2n + 1 ; 3n + 2 ) = 1 

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

Tẫn
30 tháng 4 2019 lúc 15:23

Gọi d là ƯC của 2n + 1 và 3n + 3

Ta có: 2n + 1 ⋮ d => 6n + 3 ⋮ d

Và 2n + 2 ⋮ d => 6n + 4 ⋮ d

Do đó:

 (6n + 4) - (6n + 3) ⋮ d

=> (6n - 6n) (4 - 3) ⋮ d

=> 1 ⋮ d => d = 1

Hay ƯC(2n + 1, 3n + 2) = 1 

=> 2n + 1 / 3n + 2 tối giản

Đoan Thùy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2022 lúc 12:55

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản