chứng minh rằng với mọi số nguyên n thì
\(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2⋮5\)
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
Chứng minh rằng với mọi số n nguyên dương thì:\(5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)⋮91\)
Ez nhé
\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)
Ta có : \(A=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\forall n\in N\)
\(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\forall n\in Z\)
Mà \(\left(7;13\right)=1\) nên \(A⋮91\) (đpcm)
Chứng minh rằng với mọi giá trị nguyên của n ta luôn có:
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
b) \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
a,
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\\ =\left(n^2+3n-1\right)n+\left(n^2+3n-1\right)2-n^3+2\\ =n^3+3n^2-n+2n^2+6n-2-n^3+2\\ =5n^2+5n\\ =5\cdot\left(n^2+n\right)⋮5\\ \RightarrowĐpcm\)
b,
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\\ =\left(6n+1\right)n+\left(6n+1\right)5-\left(3n+5\right)2n-\left(3n+5\right)\\ =6n^2+n+30n+5-6n^2-10n-3n-5\\ =18n⋮2\\ \RightarrowĐpcm\)
Chứng minh rằng với mọi số nguyên n thì
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
(n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 5n2 + 5n - 2 - n3 + 2 = 5(n2 + n) ⋮ 5
Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\) chia hết cho 5
Vậy \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho5(đpcm)
Chứng minh rằng: với mọi số nguyên n thì:
\(\left(n^3+3n-1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
chứng minh rằng với mọi số nguyên n thì
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)⋮2\)
Bn có sai ko? Hay đề là tìm n để Biểu thức \(⋮\) 2
Ta có: \(\left(3n+5\right)\left(2n-10\right)=2\left(n-5\right)\left(3n+5\right)\) \(⋮\) 2
=> Theo đề bài phải c/m: \(\left(6n+1\right)\left(n+5\right)\) \(⋮\) 2 (*)
Xét n là số lẻ => \(\left(6n+1\right)\left(n+5\right)\) là số chẳn => Biểu thức \(⋮\) 2
Xét n là số chẳn => \(\left(6n+1\right)\left(n+5\right)\) là số lẻ => \(⋮̸\) 2
=> Để (6n+1)(n+5)−(3n+5)(2n−10) \(⋮\) 2 thì n là số lẻ, n\(\in Z\)
\(c,31,8^2-2.31,8.21,8+21,8^2\)
Bài 12 : chứng minh rằng với mọi số nguyên n thì
a, \(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
b, \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Chứng minh rằng với mọi n thuộc Z thì :
a) \(\left(n^2+3n-1\right).\left(n+2\right)-n^3+2⋮5\)
b) \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
c) \(\left(2n-1\right).3-\left(2n-1\right)⋮8\)
d) \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
CHỨNG MINH RẰNG \(\left(2^{3n+1}+2^n\right)\left(n^5-n\right)⋮30\) (VỚI MỌI n LÀ SỐ TỰ NHIÊN)
Ta có: \( \left(2^{3n+1}+2^n\right)\left(n^5-n\right)=\left(2^{3n+1}+2^n\right)n\left(n^4-1\right)\)
\(=\left(2^{3n+1}+2^n\right)n\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(2^{3n+1}+2^n\right)n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
Để chia hết cho 30 thì cần có một số chia hết cho 5;2;3
(...)(chia hết cho 30) thì \(\left(2^{3n+1}+2n\right)\left(n^5-n\right)\)chia hết cho 30