cho hình thang ABCD ( AB//CD) . O là giao điểm của AC và BD . qua O kẻ đường thẳng a//AB và CD . CMR
a,OE = OF
b, 1/AB + 1/CD = 2/EF
vẽ luôn cả hình giúp mình
Cho hình thang ABCD(AB//CD) O là giao điểm của AC và BD qua O kẻ đường thẳng a//AB và CD chứng minh rằng :
a)OE=OF
b) 1/AB+1/CD=2/EF
Gấp ạ💦💦
Cho hình thang ABCD (AB//CD) có AB=4cm, CD=9cm. Gọi O là giao điểm của 2 đường chéo AC và BD.
a, Tính tỉ số của 2 đoạn thẳng OA và OC; OB và BD.
b, Qua O kẻ đường thẳng song song với AB cắt AD ở E, cắt BC ở F.Chứng minh: OE=OF và 1/AB+1/CD=2/EF
a, xét tam giác ODC có : AB // DC
=> OA/OC = OB/OD = AB/DC (đl)
có : AB = 4; DC = 9 (gt)
=> OA/OC = OB/OD = 4/9
B, xét tam giác ABD có : EO // AB (gt) => EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có FO // AB (gt) => OF/AB = CO/CA (hệ quả) (2)
xét tam giác ODC có AB // DC (gt) => DO/DB = CO/CA (hệ quả) (3)
(1)(2)(3) => OE/AB = OF/AB
=> OE = OF
xét tam giác ABD có : EO // AB(Gt) => EO/AB = DE/AD (hệ quả) (4)
xét tam giác ADC có EO // DC (gt) => OE/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + AE/AD
=> EO(1/AB + 1/DC) = 1 (*)
xét tam giác ACB có FO // AB (gt) => OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có OF // DC (gt) => OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = 1 (**)
(*)(**) => OF(1/AB + 1/DC) + OE(1/AB + 1/DC) = 1 + 1
=> (OE + OF)(1/AB + 1/DC) = 2
=> EF(1/AB + 1/DC) = 2
=> 1/AB + 1/DC = 2/EF
Cho hình thang ABCD có AB//ĐC ở là giao điểm của AC và BD qua Ở kẻ đường thẳng a// AB và CD , cmr : OE=OF( các bạn vẽ hình giúp mik với)
Sửa đề: a cắt AD,BC lần lượt tại E và F
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AE}{AD}\left(1\right)\)
Xét ΔBDC có OF//DC
nên \(\dfrac{OF}{DC}=\dfrac{BF}{BC}\left(2\right)\)
Xét hình thang ABCD có EF//AB//CD
nên \(\dfrac{AE}{ED}=\dfrac{BF}{FC}\)
=>\(\dfrac{ED}{AE}=\dfrac{CF}{BF}\)
=>\(\dfrac{ED+AE}{AE}=\dfrac{CF+BF}{BF}\)
=>\(\dfrac{AD}{AE}=\dfrac{BC}{BF}\)
=>\(\dfrac{AE}{AD}=\dfrac{BF}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra OE=OF
Để chứng minh OE = OF, ta sẽ sử dụng tính chất của các tam giác đồng dạng.
Vì a//AB và CD, ta có:
∠OAB = ∠OCD (cùng là góc đối)
∠OBA = ∠ODC (cùng là góc đối)
Do đó, tam giác OAB và OCD là hai tam giác đồng dạng (theo góc-góc).
Theo tính chất của các tam giác đồng dạng, tỉ lệ giữa các cạnh tương ứng của hai tam giác đồng dạng là bằng nhau.
Vì vậy, ta có:
OA/OO = OB/OC
OD/OO = OC/OB
Từ đó, ta suy ra:
OA/OO = OD/OO
OA = OD
Vậy, ta có OA = OD.
Do đó, ta có tam giác OAE và ODF là hai tam giác cân (vì OA = OD).
Vì vậy, ta có OE = OF.
Vậy, ta đã chứng minh được OE = OF.
Cho hình thang ABCD(AB//CD).O là giao điểm của AC và BD.Qua O kẻ đường thẳng a//AB và CD cắt AD và BC lần lượt tại E và F.Chứng minh rằng:
a)OE=OF
b)\(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)
a, xét tam giác ABD có : EO // AB (Gt)
=> EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có : OF // AB (gt)
=> OF/AB = OC/CA (hệ quả) (2)
xét tam giác ODC có : AB // DC (gt)
=> DO/DB = OC/CA (hệ quả) (3)
(1)(2)(3) => OE = OF
b, xét tam giác ABD có EO // AB (gt)
=> EO/AB = DE/AD (hệ quả) (4)
xét tam giác ACD có : EO // DC
=> EO/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + EA/AD
=> EO(1/AB + 1/BC) = AD/AD = 1 (*)
xét tam giác ACB có : FO // AB
=> OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có : OF // DC
=> OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = BC/BC = 1 (**)
(*)(**) => OF(1/AB + 1/CD) + OE(1/AB + 1/DC) = 2
=> (OF + OE)(1/AB + 1/DC) = 2
có OF + OE = EF
=> 1/AB + 1/DC = 2/EF
Cho hình thang ABCD ( AB // CD ) . O là giao điểm của AC và BD . Qua O kẻ đường thẳng a // AB và CD , đường thẳng a cắt AD và BC tại E và F . Chứng minh rằng :
a) OE/CD = OA/OC , OF/CD = OB/OD
b) OE = OF
c) 1/AB + 1/CD = 2/EF
câu a,b dễ quá
c/Có: \(\frac{2}{EF}=\frac{2}{2OE}=\frac{1}{OE}\)
Ta có: \(\frac{OE}{AB}=\frac{DE}{AD}\left(1\right),\frac{OE}{CD}=\frac{AE}{AD}\left(2\right)\).Cộng (1) và (2) đc
\(OE\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DE+AE}{AD}\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OE}\)
Suy ra ĐPCM
Cho hình thang ABCD (AB//CD) có AC giao BD tại O. Qua O kẻ đường song song với AB và CD. CMR:
a)\(\frac{ED}{AE}+\frac{BF}{Bc}=1\)
b)OE = OF
c)Ba điểm O, I, J thẳng hàng
Cho hình thang ABCD (AB//BD). Gọi O là giao điểm của AC và BD. Qua O kẻ đường thẳng // AB, CD và cắt AD, BC lần lượt tại E, F. CMR:
a. \(S_{OAD}=S_{OBC}\)
b. OE = OF
Cho hình thang ABCD (AB // CD) Gọi O là giao điểm của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song AB, cắt AD và BC theo thứ tự E và G
a) Ch/m : OA.OD = OB.OC
b) CHo AB = 5cm, CD =10cm và OC=6cm. Hãy tính OA, OE
c) CMR : \(\frac{1}{OE}=\frac{1}{OG}=\frac{1}{AB}+\frac{1}{CD}\)