Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
super xity
Xem chi tiết
Việt Anh
Xem chi tiết
ILoveMath
3 tháng 9 2021 lúc 9:18

\(A=x^2-4x+1=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\)

Vậy \(A_{Min}=-3khix=2\)

 

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
28 tháng 6 2017 lúc 14:45

Phân thức đại số

Nguyễn Thị Thanh Trúc
Xem chi tiết
thịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2021 lúc 18:32

b: \(\Leftrightarrow\dfrac{x-2}{A}=\dfrac{\left(5x-1\right)\left(x-2\right)}{x^2\left(5x-1\right)+3\left(5x-1\right)}=\dfrac{x-2}{x^2+3}\)

hay \(A=x^2+3\)

vuni
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 7:17

\(a,=x^2+x+\dfrac{1}{4}\\ b,=4x^2+2x+\dfrac{1}{4}\\ c,=x^2-2+\dfrac{1}{x^2}\\ d,=4x^2+\dfrac{8}{3}x+\dfrac{4}{9}x^2\\ e,=a^2-1\\ f,=25x^4-4\)

Nguyễn Minh Hoàng
16 tháng 9 2021 lúc 7:19

\(a,\left(x+\dfrac{1}{2}\right)^2=x^2+x+\dfrac{1}{4}\)

\(b,\left(2x+\dfrac{1}{2}\right)^2=4x^2+2x+\dfrac{1}{4}\)

\(c,\left(x-\dfrac{1}{x}\right)^2=x^2-2+\dfrac{1}{x^2}\)

\(d,\left(\dfrac{2x+2}{3x}\right)^2=\dfrac{\left(2x+2\right)^2}{9x^2}=\dfrac{4x^2+8x+4}{9x^2}\)

\(e,\left(a-1\right).\left(a+1\right)=a^2-1\)

\(f,\left(5x^2-2\right).\left(5x^2+2\right)=25x^4-4\)

hưng phúc
16 tháng 9 2021 lúc 7:23

a. \(\left(x+\dfrac{1}{2}\right)^2=x^2+x+\dfrac{1}{4}\)

b. \(\left(2x+\dfrac{1}{2}\right)^2=4x^2+2x+\dfrac{1}{4}\)

c. \(\left(x-\dfrac{1}{x}\right)^2=x^2-2+\dfrac{1}{x^2}\)

d. \(\left(2x+\dfrac{2}{3x}\right)^2=4x^2+\dfrac{8}{3}+\dfrac{4}{9x^2}\)

e. (a - 1)(a + 1) = a2 - 1

f. (5x2 - 2)(5x2 + 2) = 25x4 - 4 

g. (2a - 3)(2a + 3) = 4a2 - 9

Erza Scarlet
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 22:39

Câu 5:B

Câu 4: C

Câu 3: D

Câu 2: A

Câu 1: A

CHI NGUYEN
Xem chi tiết
Yeutoanhoc
11 tháng 5 2021 lúc 16:35

`A(x)=0`

`<=>4x(x-1)-3x+3=0`

`<=>4x(x-1)-3(x-1)=0`

`<=>(x-1)(4x-3)=0`

`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac341\end{array} \right.$

`B(x)=0`

`<=>2/3x^2+x=0`

`<=>x(2/3x+1)=0`

`<=>` $\left[ \begin{array}{l}x=0\\x=-\dfrac32\end{array} \right.$

`C(x)=0`

`<=>2x^2-9x+4=0`

`<=>2x^2-8x-x+4=0`

`<=>2x(x-4)-(x-4)=0`

`<=>(x-4)(2x-1)=0`

`<=>` $\left[ \begin{array}{l}x=4\\x=\dfrac12\end{array} \right.$

Vo Ngoc Bao Trinh
Xem chi tiết
hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:24

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:30

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)